首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Perovskite-type B-site Bi-doped ceramic membranes for oxygen separation   总被引:1,自引:0,他引:1  
Novel mixed conducting oxides, B-site Bi-doped perovskites were exploited and synthesized.Cubic perovskite structures were formed for BaBi0.2CoyFe0.8-yO3-δ (y≤0.4) and BaBixCo0.2Fe0.8-xO3-δ(x=0.1-0.5).The materials exhibited considerable high oxygen permeability at high temperature.The oxygen permeation flux of BaBi0.2Co0.35Fe0.45O3-δ membrane reached about 0.77×10-6 mol/cm2.s under an air/helium oxygen partial pressure gradient at 900℃, which was much higher than that of other bismuth-contained mixed conducting membranes.The permeation fluxes of the materials increased with the increase of cobalt content, but no apparent simple relationship was found with the bismuth content.The materials also demonstrated excellent reversibility of oxygen adsorption and desorption.Stable time-related oxygen permeation fluxes were found for BaBi0.2Co0.35Fe0.45O3-δ and BaBi0.3Co0.2Fe0.5O3-δ membranes at 875℃.  相似文献   

2.
Mixed-conducting oxygen permeable membranes represent a class of novel ceramic membranes, which exhibit mixed oxygen ionic and electronic conductivities. At high temperatures, oxygen can permeate through the membrane from the high to low oxygen pressure side under an oxygen concentration gradient. Theoretically, the permselectivity of oxygen is 100%. Recently, a novel mixed-conducting membrane—Ba0.5Sr0.5Co0.8Fe0.2O3−δ has been developed, which shows extremely high oxygen permeability and promising stability. Furthermore, the reactor made with such membranes was successfully applied to the partial oxidation of methane to syngas reaction using air as the oxygen source, which realized the coupling of the separation of oxygen from air and the partial oxidation of membrane reaction in one process. At 850°C, methane conversion > 88%, CO selectivity > 97% and oxygen permeation rate of about 7.8 mL/(cm2 · min) were obtained.  相似文献   

3.
Magnetic Co1-xNixFe2O4 nanoparticles (NPs) were successfully synthesized via a solvothermal method using ethylene glycol as solvent.The samples were characterized by X-ray diffraction (XRD),field emiss...  相似文献   

4.
Silica coated(30 wt%) cobalt zinc ferrite(Co1 xZnxFe2O4, x?0, 0.2, 0.3, 0.4, 0.5 and 1) nanoparticles were synthesized by using sol–gel method. Silica acts as a spacer among the nanoparticles to avoid the agglomeration. X-ray diffraction(XRD) reveals the cubic spinel ferrite structure of nanoparticles with crystallite size in the range 37–45 nm. Fourier transform infrared(FTIR) spectroscopy confirmed the formation of spinel ferrite and SiO2. Scanning electron microscopy(SEM) images show that the nanoparticles are nearly spherical and non-agglomerated due to presence of non-magnetic SiO2 surface coating. All these measurements signify that the structural and magnetic properties of Co1 xZnxFe2O4 ferrite nanoparticles strongly depend on Zn concentration and nanoparticle average crystallite size in different Zn concentration regimes.& 2014 Chinese Materials Research Society. Production and hosting by Elsevier B.V. All rights reserved.  相似文献   

5.
Co-substituted α-Ni(OH)2 was synthesized by a novel microwave homogeneous precipitation method in the presence of urea. LiNi0.8Co0.2O2 cathode material was synthesized by calcining Co-substituted α-Ni(OH)2 precursor and LiOH·H2O at 900℃for 10 h in flowing oxygen. XRD, FTIR, FESEM and electrochemical tests were used to study the physical and the electrochemical performances of the materials. The results show that the prepared LiNi0.8Co0.2O2 compound has a good layered hexagonal structure. Moreover, the LiNi0.8Co0.2O2cathode material demonstrates stable cyclability with a high initial specific discharge capacity of 183.9 mAh/g. The good electrochemical performance could be attributed to the uniform distribution of Ni^2+ and Co^2+ ions in the crystal structure and a minimal cation mixing in LiNi0.8Co0.2O2 host structure.  相似文献   

6.
The volatile organic compounds (VOCs) emitted from the sources of industries are a kind of main pol-lutants to the atmosphere. The Environmental Protec-tion Agency (EPA) of the United States lists more than 300 VOC pollutants. 70% of the toxic compounds t…  相似文献   

7.
The bulk metallic glassy (BMG) rods of [(Fe0.5Co0.5)0.72B0.192Si0.048Nb0.04]100-xYx (x=0-6) and [(FexCo1-x)0.72B0.192Si0.048Nb0.04]96Y4 (x=0.5-0.8) were prepared by copper mold casting. The structure, thermal stability, and magnetic properties of the samples were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and vibrating sample magnetometer (VSM). Adding 1at% to 6at% of yttrium, the bulk glassy alloy rods of [(Fe0.5Co0.5)0.72B0.192Si0.048Nb0.04]100-xYx(x=0-6) with the diameter of 3 mm were not formed, and the sample with 4at% of yttrium showed less crystalline phase than others. When the Fe/Co atomic ratio was between 5:5 and 7:3, the bulk glassy alloy rods of [(Fe1-xCox)0.72B0.192Si0.048Nb0.04]96Y4 (x=0.5-0.8) with the diameter of 2 mm were fabricated. In the (Fe, Co)-B-Si-Nb-Y BMGs, when the Fe content increased, the thermal stability, the supercooled liquid region, and the glass-forming ability (GFA) decreased, but the saturation magnetization (Ms) increased.  相似文献   

8.
The effect of B sites on the catalytic activities of oxygen evolution reaction(OER)for perovskite oxides La_(0.6)Sr_(0.4)Co_xFe_(1-x)O_(3-δ)(x=0,0.2,0.4,0.6,0.8,1,denoted as LSF,LSCF-28,LSCF-46,LSCF-64,LSCF-82 and LSC,respectively)prepared by a convenient and simple method of electrospinning technique is reported.The prepared La_(0.6)Sr_(0.4)Co_xFe_(1-x)O_(3-δ)catalysts possess almost same crystal structures,similar morphologies(except for the LSC catalyst)and slightly different BET surface areas.Upon the optimization of the Co/Fe atomic ratio,the optimal LSCF-82 catalyst exhibits the OER performance with a low onset potential of 1.541 V,a small Tafel slope of 80.56 mV dec~(-1),a high charge-transfer rate and a large electrochemical surface area in 0.1 M KOH solution.LSCF-82 catalyst exhibits the long-term stability under the catalytic operation condition for 12 h.Such catalytic activity may mainly cause by the synergy of higher catalytic activity Co and lower catalytic activity Fe.Thus,the reasonable optimization of the transition metal composition in B sites for the perovskite oxides is in favor of the improvement of OER performance.  相似文献   

9.
The electromagnetic properties of Ba2Co1.8Cu0.2Fe12O22 (Co2Y) and Ba3Co2Fe23.4Zn0.6O41 (Co2Z) were studied by measuring microwave scattering parameters. In the transmission spectra of Ba2Co1.8Cu0.2Fe12O22, a forbidden band emerges due to ferromagnetic resonance, and the permeability will turn to negative in the vicinity of the ferromagnetic resonance frequency. In the complex permittivity spectra of Ba3Co2Fe23.4Zn0.6O41, the negative permittivity can be obtained due to dielectric resonance. Therefore, Co2Y and Co2Z can be used to construct left-handed materials possessing negative permeability and negative permittivity simultaneously.  相似文献   

10.
xLi2MnO3·(1-x)LiNi0.4Co0.2Mn0.4O2(x=0.5) powders were synthesized from co-precipitated spherical metal carbonate,Ni0.2Co0.1Mn0.533(CO3)x.It has been found that the preparation of metal carbonate was si...  相似文献   

11.
Co1−xy Nix+y Sb3−x Sn x polycrystals were fabricated by vacuum melting combined with hot-press sintering. The effect of alloying on the thermoelectric properties of unfilled skutterudite Co1−x Ni x Sb3−x Sn x was investigated. A leap of electrical conductivity from the Co0.93Ni0.07Sb2.93Sn0.07 sample to the Co0.88Ni0.12Sb2.88Sn0.12 sample occurs during the measurement of electrical conductivity, indicating the adjustment of band structure by proper alloying. The results show that alloying enhances the power factor of the materials. On the basis of alloying, the thermoelectric properties of Co0.88Ni0.12Sb2.88Sn0.12 are improved by Ni-doping. The thermal conductivities of Ni-doping samples have no reduction, but their power factors have obvious enhancement. The power factor of Co0.81Ni0.19Sb2.88Sn0.12 reaches 3.0 mW·m−1·K−2 by Ni doping. The dimensionless thermoelectric figure of merit reaches 0.55 at 773 K for the unfilled Co0.81Ni0.19 Sb2.88Sn0.12.  相似文献   

12.
采用溶胶 凝胶法制备了GdxBiY2-xFe5O12(x=0,0.1,0.2,0.4,0.6,0.8)纳米晶粉体系列样品. 利用DTA,TGA,XRD,TEM,IR和VSM等方法对材料的制备过程和产物进行分析. 结果表明, Gd的掺入并未改BiY2Fe5O12的石榴石结构. 讨论了Gd离子掺入BiYIG铁氧体的粒 径、 形貌及磁性规律.  相似文献   

13.
The development of nanotechnology in recent decades has brought new opportunities in the exploration of new materials for solving the issues of fossil fuel consumption and environment pollution.Materials with nano-array architecture are emerging as the key due to their structure advantages,which offer the possibility to fabricate high-performance electrochemical electrodes and catalysts for both energy storage and effcient use of energy.The main challenges in this feld remain as rational structure design and corresponding controllable synthesis.This article reviews recent progress in our laboratory related to the hydrothermal synthesis of metal oxide and hydroxide nanoarrays,whose structures are designed aiming to the application on supercapacitors and catalysts.The strategies for developing advanced materials of metal oxide and hydroxide nanoarrays,including NiO,Ni(OH)2,Co3O4,Co3O4@Ni–Co–O,cobalt carbonate hydroxide array,and mixed metal oxide arrays like Co3 xFex O4and Znx Co3 xO4,are discussed.The different kinds of structure designs such as 1D nanorod,2D nanowall and hierarchical arrays were involved to meet the needs of the high performance materials.Finally,the future trends and perspectives in the development of advanced nanoarrays materials are highlighted.  相似文献   

14.
Relationships between the coercivity of hydrogenation disproportionation desorption recombination (HDDR) Nd12.5Fe81.5−x Co6B x bonded magnets and boron content were investigated. Nd2Fe17 phase with planar magnetic anisotropy is present in the microstructure when x= 4at%–5.88at%, which does not reduce the coercivity of the bonded magnets. High-resolution transmission electron microscopy (TEM) images show that Nd2Fe17 phase exists in the form of nanocrystals in the Nd2Fe14B matrix. There is an exchange-coupling interaction between the two phases so that the coercivity of HDDR Nd12.5Fe81.5−x Co6B x bonded magnets is hardly reduced with a decrease in boron content.  相似文献   

15.
A new co-precipitation route was proposed to synthesize LiNi0.8Al0.2−xTixO2 (x=0.0-0.20) cathode materials for lithium ion batteries, with Ni(NO3)2, Al(NO3)3, LiOH·H2O, and TiO2 as the starting materials. Ultrasonic vibration was used during preparing the precursors, and the precursors were protected by absolute ethanol before calcination in the air. The influences of doped-Ti content, calcination temperature and time, additional Li content, and ultrasonic vibration on the structure and properties of LiNi0.8Al0.2−xTixO2 were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and charge-discharge tests, respectively. The results show that the optimal molar fraction of Ti, calcination temperature and time, and additional molar fraction of Li for LiNi0.8Al0.2−xTixO2 cathode materials are 0.1, 700°C, 20 h, and 0.05, respectively. Ti doping facilitates the formation of the α-NaFeO2 layered structure, and ultrasonic vibration improves the electrochemical performance of LiNi0.8Al0.2−xTixO2.  相似文献   

16.
A new series of solid solutions Lu2W3−x Mo x O12 (0.5≤x≤2.5) were successfully synthesized by the solid-state method. Their crystal structure and negative thermal expansion properties were studied using high-temperature X-ray powder diffraction and the Rietveld method. All samples of rare-earth tungstates and molybdates are found to crystallize in the same orthorhombic structure with space group Pnca and show the negative thermal expansion phenomena related to transverse vibration of bridging oxygen atoms in the structure. Thermal expansion coefficients (TEC) of Lu2W3−x Mo x O12 are determined as −20.0×10−6 K−1 for x=0.5 and −16.1×10−6 K−1 for x=2.5 but -18.6×10−6 and −16.9×10−6 K−1 for unsubstituted Lu2W3O12 and Lu2Mo3O12 in the identical temperature range of 200 to 800°C. High-temperature X-ray diffraction (XRD) data and bond length analysis suggest that the difference between W-O and Mo-O bond is responsible for the change of TECs after the element substitution in this series of solid solutions.  相似文献   

17.
采用固相反应法制备了La0.7Sr0.3Co1-xCuxO3-δ系列中温固体氧化物燃料电池(SOFC)阴极材料粉体.对其进行晶体结构表征,高温电导率和热膨胀曲线测试,并选取其中性能较好的样品进行了单电池实验.结果表明,Cu的掺杂降低了(La,Sr)CoO La3体系阴极材料的热膨胀系数,在x=0.05时电导率略高于未掺Cu的样品.以La0.7Sr0.3Co0.95Cu 0.05O 3-δ为阴极、Ce0.8Sm0.2O1.9为电解质组成的SOFC单电池,在850℃最大短路电流密度达511mA/cm2,最大输出功率密度约为0.106W/cm2.  相似文献   

18.
In the present work,one dimensional La0.8Sr0.2Co0.2Fe0.8O3 δ(LSCF) nanofibers with the mean diameter of about 100 nm prepared by electrospinning were deposited on Gd0.2Ce0.8O1.9(GDC) electrolyte followed by sintering to form one dimensional LSCF nanofiber cathode. And LSCF/GDC composite cathodes were formed by introducing GDC phases into LSCF nanofiber scaffold using infiltration method. The polarization resistances for the composite cathode with an optimal LSCF/GDC mass ratio of 1/0.56 are 0.27,0.14 and 0.07 Ω cm2at 650,700 and750 1C,respectively,which are obviously smaller than 2.26,0.78 and 0.29 Ω cm2of pure LSCF nanofiber cathode. And the activation energy is1.194 eV,which is much lower than that of pure LSCF nanofiber cathode(1.684 eV). These results demonstrate that the infiltration of GDC into LSCF nanofiber scaffold is an effective approach to achieve high performance cathode for solid oxide fuel cells(SOFCs). In addition,the performance of composite cathode in this work was also compared with that of our previous nanorod structured LSCF/GDC composite cathode.  相似文献   

19.
This study investigated the feasibility of ultrafast crystallization of M-type barium ferrite when the coprecipitation precursors in stoichiometric proportions as BaFe12O19, Fe(OH)3 and BaCO3 nanoparticles, had been heated by spark plasma sintering (SPS) process. The results show that SPS method may realize the ultrafast crystallization of M-type barium ferrite, absolutely prevent the crystallization of intermediate phase α-Fe2O3, and significantly decrease the crystallization temperature of M-type barium ferrite. The sintered samples obtained at 800℃ by sintering the precursors for 10 minutes are a kind of multiphase ferrites composed of major phase M-type barium ferrite and trace amount of BaFe0.24Fe0.76O2.88. It is discovered that M-type barium ferrites in the holes of the sintered samples are in nanobelt microstructure about 100-300 nm in width and several micrometers in length. These M-type barium ferrite nanobelts are non-stoichiometric and may be expressed as BaFe12 xO19 1.5x (-4.77≤x≤6.50). Their composistions suggest completely random Fe-rich or Ba-rich domains.  相似文献   

20.
LiNi1/3Co1/3Mn1/3O2 and Ce-doped LiNi1/3Co1/3Mn1/3O2 cathode materials were synthesized by a co-precipitation method and solid phase synthesis and characterized using X-ray diffraction(XRD) and scanning electron microscopy(SEM).The results indicated that the resultant cathode materials with different Ce content all had a good layer structure and high crystallinity.Electrochemical performance testing of the cathode materials showed that the discharge capacity increased with increasing Ce content while the initial reversible capacity attenuation decreased with Ce doping.When the Ce content of the cathode materials is x=0.2,and the current charge and discharge rate is a constant 0.2 C,the discharge capacity maintained 91% of its initial capacity after cycling 50 times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号