首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
针对新型双模功率分流混合动力系统,为改善拟搭载样车的能量经济性,开发了基于模型预测控制的实时优化能量管理策略并进行了仿真验证。通过分析各动力源在不同工作模式下的转速转矩关系,建立了功率分流系统模型,通过分析该构型方案在不同功率分流模式下的机械点,得到系统效率随传动比的变化关系,并基于发动机稳态燃油消耗特性曲线建立了其数学模型,基于安时积分法建立了动力电池一阶等效模型。根据已有的发动机模型及动力电池模型,建立了功率分流混合动力系统短时域预测模型,预测了有限时域内电池荷电状态及发动机燃油消耗率的变化。最后,基于预测时域内等效燃油消耗最小提出系统在混合动力模式下发动机工作点的最优决策律,并基于该最优决策律开发功率分流混合动力系统模型预测能量管理策略,实现了各动力源转矩的实时最优分配。设置预测时域和控制时域均为3s,新欧洲行驶工况仿真结果表明,该控制策略可实现能量管理的实时滚动优化,其百公里油耗为4.95L,相比于基于规则能量管理策略下的百公里油耗5.364L,可提升整车大约7.7%的燃油经济性。  相似文献   

2.
新型功率分流混合动力系统能量管理预测优化   总被引:1,自引:0,他引:1  
针对新型双模功率分流混合动力系统,为改善拟搭载样车的能量经济性,开发了基于模型预测控制的实时优化能量管理策略并进行了仿真验证。通过分析各动力源在不同工作模式下的转速转矩关系,建立了功率分流系统模型。通过分析该构型方案在不同功率分流模式下的机械点,得到系统效率随传动比的变化关系,并基于发动机稳态燃油消耗特性曲线建立了其数学模型,基于安时积分法建立了动力电池一阶等效模型。根据已有的发动机模型及动力电池模型,建立了功率分流混合动力系统短时域预测模型,预测了有限时域内电池荷电状态及发动机燃油消耗率的变化。最后,基于预测时域内等效燃油消耗最小提出系统在混合动力模式下发动机工作点的最优决策律,并基于该最优决策律开发功率分流混合动力系统模型预测能量管理策略,实现了各动力源转矩的实时最优分配。设置预测时域和控制时域均为3s,新欧洲行驶工况仿真结果表明,该控制策略可实现能量管理的实时滚动优化,其百公里油耗为4.95L,相比于基于规则能量管理策略下的百公里油耗5.364L,可提升整车大约7.7%的燃油经济性。  相似文献   

3.
针对新型双模功率分流混合动力系统,为改善拟搭载样车的能量经济性,开发了基于模型预测控制的实时优化能量管理策略并进行了仿真验证。通过分析各动力源在不同工作模式下的转速转矩关系,建立了功率分流系统模型,通过分析该构型方案在不同功率分流模式下的机械点,得到系统效率随传动比的变化关系,并基于发动机稳态燃油消耗特性曲线建立了其数学模型,基于安时积分法建立了动力电池一阶等效模型。根据已有的发动机模型及动力电池模型,建立了功率分流混合动力系统短时域预测模型,预测了有限时域内电池荷电状态及发动机燃油消耗率的变化。最后,基于预测时域内等效燃油消耗最小提出系统在混合动力模式下发动机工作点的最优决策律,并基于该最优决策律开发功率分流混合动力系统模型预测能量管理策略,实现了各动力源转矩的实时最优分配。设置预测时域和控制时域均为3s,新欧洲行驶工况仿真结果表明,该控制策略可实现能量管理的实时滚动优化,其百公里油耗为4.95L,相比于基于规则能量管理策略下的百公里油耗5.364L,可提升整车大约7.7%的燃油经济性。  相似文献   

4.
考虑到驾驶风格对燃油经济性的影响较大,提出了一种融合驾驶风格识别的自适应控制策略,用于插电式混合动力汽车发动机和电机之间的实时扭矩分配。 构建出两种驾驶风格识别模型,在获得驾驶风格识别模型后,考虑到对各种驾驶风格的适应性,融合识别的驾驶风格类别,提出了一种与基于自适应等效因子算法的 PI 模糊更新规则相结合的等效消耗最小化策略 (ECMS)。根据最小等效燃油消耗控制算法和电池电量平衡控制方法,结合驾驶风格识别的结果调用相应最优控制参数,对发动机和电池的功率分配进行实时优化计算,实现对整车的控制。将一段工况使用所指定的能量管理策略,仿真结果表明,融合驾驶风格识别的策略在燃油经济性最高提升了10.5%,汽车的HC,CO,NOx总排放最高降低了11%,,发动机,电机工作点更好的运行在最佳区域中。  相似文献   

5.
并联式混合动力汽车机械式自动变速器换档策略   总被引:1,自引:0,他引:1  
并联式混合动力汽车(Parallel Hybrid Electric Vehicle,PHEV)档位决策作为能量管理策略的一部分,对整车动力性、经济性及排放性能有较大影响.混合动力汽车换档策略不仅要考虑发动机,还要考虑电机和电池系统的影响.基于电池电能的等效燃油概念,通过考虑电池充、放电过程中的能量损失,将充、放电生成或消耗的电能折算为等效燃油,由此得到不同档位时整车的综合燃油消耗,进而选取燃油消耗较小时的档位使整车经济性能指标达到最优.同时,该方法也通用于装备液力自动变速器(Automatic Transmission,AT)等有级式自动变速器的混合动力汽车换档策略制定.  相似文献   

6.
以提高整车的最小燃油消耗为控制目标,研究了串联混合动力推土机的能量管理策略。首先,根据双电机独立驱动的串联混合动力推土机结构,建立了发动机、发电机、电机及其控制器、超级电容、推土机动力学的数学模型;然后,基于发动机最佳燃油消耗功率曲线,提出一种恒温器式与功率跟随式相结合的能量管理控制策略;最后,采用MATLAB/Simulink软件,通过理论与试验相结合建模方法对串联混合动力推土机的整机和控制策略进行了仿真建模,利用130 s推土机的典型工况对动力源的能量分配和综合工况的经济性进行了仿真研究。研究结果表明:该策略可对发动机输出功率与超级电容充放电功率进行合理分配,满足整车功率需求,超级电容充放电次数明显减少且荷电状态(SOC)值在最佳工作区间内;混合动力发动机比原机型发动机燃油消耗率降低,发动机负载波动也明显减小,原机型发动机燃油消耗量为1 512 g,混合动力发动机燃油消耗量为1 358 g,其比原机型节油10.2%,整机燃油经济性得到明显提高。该方法是一种有效的串联混合动力推土机能量管理方法。  相似文献   

7.
为了优化混合动力越野车多动力源动态响应控制与燃油经济性,以需求功率为关键研究参量,设计自适应马尔科夫链预测算法,实现需求功率的实时预测.基于等效燃油消耗最小控制策略,提出考虑实时需求功率的变化寻优域,设计变域等效燃油消耗最小控制策略,实现能量管理优化.运用Cruise和Simulink软件搭建了混合动力越野车能量管理联合仿真平台,以典型越野行驶工况为仿真循环工况进行策略验证.联合仿真结果表明:所设计的自适应马尔科夫链需求功率预测算法使得整车动力性提升6.5%;与传统复合规则型策略相比,变域等效燃油消耗最小能量管理策略使得整车燃油经济性提升10.5%.  相似文献   

8.
为了提高混合动力汽车的燃油经济性和控制策略的稳定性,以第三代普锐斯混联式混合动力汽车作为研究对象,提出了一种等效燃油消耗最小策略(equivalent fuel consumption minimization strategy,ECMS)与深度强化学习方法(deep feinforcement learning,DRL)结合的分层能量管理策略。仿真结果证明,该分层控制策略不仅可以让强化学习中的智能体在无模型的情况下实现自适应节能控制,而且能保证混合动力汽车在所有工况下的SOC都满足约束限制。与基于规则的能量管理策略相比,此分层控制策略可以将燃油经济性提高20.83%~32.66%;增加智能体对车速的预测信息,可进一步降低5.12%的燃油消耗;与没有分层的深度强化学习策略相比,此策略可将燃油经济性提高8.04%;与使用SOC偏移惩罚的自适应等效燃油消耗最小策略(A-ECMS)相比,此策略下的燃油经济性将提高5.81%~16.18%。  相似文献   

9.
为提高混合动力汽车的智能化控制水平,进一步改善整车燃油经济性和动力性,提出一种多能源动力总成的多智能体协调控制方法.以并联式混合动力汽车为原型,建立动力总成部件子系统智能体模型,构建多智能体系统协调控制框架,根据不同工况模式对总成动力进行预分配,利用单智能体的智能行为和多智能体的协作能力解决车辆对复杂路况的自适应问题.在Cruise软件环境下对智能体控制系统和协调控制策略进行了仿真验证,结果表明,动力总成的多智能体协调控制策略正确可行,使混合动力汽车能根据不同工况自适应控制模式,进而对动力进行自适应匹配,能够改善整车燃油经济性和动力性.  相似文献   

10.
一种液压混合动力车辆燃油经济性研究   总被引:1,自引:0,他引:1  
阐述一种液压混合动力垃圾回收车辆的动力传动系统的构成和能量策略;采用整车性能模拟软件GT-DRIVE和自编程序联合模拟计算的方法,建立该液压混合动力垃圾回收车的整车燃油经济性计算模型;根据指定的运行工况对垃圾回收车的1个工作循环进行模拟,计算得到车辆的燃油消耗量和发动机工作工况点分布;将计算结果与原柴油机动力垃圾回收车的结果进行对比分析,研究液压混合动力车辆的燃油经济性。研究结果表明:液压混合动力技术既能回收利用车辆制动能,又能调整优化发动机的工作点,在指定工况内,最大节油量达43.30%,因此,该技术应用于常停常起工况的大质量车辆上具有较强的节油潜力和广阔的应用前景。  相似文献   

11.
以串联混合动力汽车为研究对象,采用“系统建模-策略开发-仿真验证”的思路对能量管理策略进行了研究,建立了动力系统各关键部件的模型.将功率分配系数作为控制变量,以燃油经济性作为控制目标建立了一种基于逻辑门限与模糊算法的能量管理策略;以US06作为循环工况,在MATLAB/Simulink平台下进行了仿真,结果表明,所提出的能量管理策略正确有效,可以实现良好的燃油经济性,与传统的开关式能量管理策略相比,可以降低油耗113%.  相似文献   

12.
为满足混合动力车辆动力性要求,并提高车辆的能量利用效率,根据动力单元与负载的能量关系及电池组充放电特性与SOC的关系,提出了一种基于电池组恒SOC和发动机燃油消耗优化控制的综合能量管理策略.对该策略进行实验验证的结果表明:电池组能保持在最佳工作状态,且车辆的燃油经济性提高了约8%.  相似文献   

13.
混合动力车辆多目标控制能量管理策略研究   总被引:1,自引:0,他引:1  
为满足混合动力车辆动力性要求,并提高车辆的能量利用效率,根据动力单元与负载的能量关系及电池组充放电特性与SOC的关系,提出了一种基于电池组恒SOC和发动机燃油消耗优化控制的综合能量管理策略.对该策略进行实验验证的结果表明:电池组能保持在最佳工作状态,且车辆的燃油经济性提高了约8%.  相似文献   

14.
并联式混合动力汽车的实时控制策略优化   总被引:2,自引:0,他引:2  
分析了并联式混合动力汽车的能量流动情况,建立了便于进行扭矩分配计算的驱动系统简化模型。将电池充放电过程中消耗的能量等效为一定的油耗,以最少等效油耗为目标函数,建立了实时控制策略。针对FUDS驾驶循环,计算得到了最少油耗的实时扭矩分配方案.结果表明,该实时控制策略能有效的降低车辆的燃油消耗,优化发动机的工作点。  相似文献   

15.
四驱电动车经济性改善的最优转矩分配控制   总被引:4,自引:1,他引:4  
阐述了转矩分配控制实现四轮驱动电动车经济性改善的思路,采用效率最大化方法优化确定了转矩分配系数矩阵作为最优转矩分配控制策略核心,针对各种驾驶循环进行了能量消耗的仿真分析,仿真分析表明,最优转矩分配控制方法能够明显减少驱动能量消耗,增加反馈制动能量回收,总体能效提高约3%,同时能够大大降低轮毂电机的发热功率,延长其使用寿命,转矩分配最优化的控制方法能够应用于采用轮毂电机的纯电动车、前轴机械驱动,以及后轴电驱动的混合动力四轮驱动汽车的能量消耗经济性改善控制。  相似文献   

16.
为了提高氢燃料电池混合动力汽车的燃料经济性,延长蓄电池寿命,选取中国重型商用车行驶工况-货车工况中3种典型工况代表"市区""市郊"和"高速公路",分别制定相应的最优能量管理策略;运用遗传算法优化支持向量机(gentic algorithm-support vector machine,GA-SVM)算法识别车辆运行工况,动态选择相应的能量管理策略,使其对选定的几种代表性工况具有自适应性,从而降低氢耗量,延长蓄电池寿命。仿真结果表明,与无工况识别的能量管理策略和采用传统算法优化的支持向量机(support vector machine, SVM)工况识别能量管理策略相比,使用GA-SVM工况识别的能量管理策略的等效氢耗量分别降低了7.78%和1.31%,蓄电池电池荷电状态(battery state of charge, SOC)变化量减小,变化相对平稳,有利于延长电池寿命。  相似文献   

17.
以一款并联式混合动力系统为研究对象,提出一种基于混合度(DOH)进行动力性、经济性、排放性的多目标优化参数匹配方法。建立综合整车各性能指标为价值函数,选定DOH为匹配设计变量,采用粒子群优化算法(Particle Swarm Optimization ,PSO)进行优化,获得不同权重系数下的优化DOH,同时权衡部件成本进而选定最佳DOH进行参数匹配,并开展回归实验验证,其结果表明:和优化前相比,最高车速提高了19.7%,每加仑行驶的里程提高了10.9%,排放量降低了19.8%。  相似文献   

18.
并联混合动力汽车的模糊转矩控制策略   总被引:7,自引:0,他引:7  
提出了一种新的并联混合动力汽车(PHEV)模糊转矩控制策略(FTCS)及其设计方法.以并联混合动力系统的工作模式为基础,利用请求转矩与发动机最佳转矩的比值和电池电荷状态(SOC)为输入、电机归一化转矩指令为输出,构建了有22条规则的模糊推理器,用以确定发动机和电机的最佳转矩分配,实现系统的总体能量转换效率最高.仿真结果表明,与采用精确门限参数的策略相比,FTCS的燃油经济性有较大提高,并能更好地控制电池SOC在工作区变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号