首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于密度泛函理论的B3LYP方法, 在6-311+G(-2df-)基组水平上考察非限域条件下单体异亮氨酸分子的手性转变过程. 通过寻找包括过渡态和中间体的反应过程各极值点结构, 绘制非限域条件下完整的异亮氨酸分子手性转变路径反应势能面, 并分析各极值点的几何及电子结构特性. 结果表明: [JP2]非限域条件下, S型异亮氨酸分子手性C上的H原子以羧基上的O原子为桥梁, 转移至手性C原子的另一侧, 实现了从S型到R型异亮氨酸分子的手性转变; 非限域条件下, 该路径有4个中间体和5个过渡态, 最大反应能垒为325.824 6 kJ/mol, 来源于第二个过渡态TS2-S-Ile.  相似文献   

2.
基于密度泛函理论的B3LYP方法,在6-311+G(2df)基组水平上研究单水协同作用下的甲硫氨酸(Met)分子手性转变反应过程,寻找Met分子手性反应过程中各中间体与过渡态的极值点结构,绘制单水协同作用下完整的Met分子手性转变路径反应势能面,并分析各极值点的几何和电子结构特性.结果表明:单水协同作用下S型Met分子手性C上的H原子以羧基内10O-19O原子为桥梁,转移至手性C原子的另一侧,实现从S型到R型Met分子的手性转变;该路径有4个中间体和5个过渡态,最大反应能垒为199.275 5kJ/mol,来源于第2个过渡态TS_2-S-Met1H_2O-2.  相似文献   

3.
基于密度泛函理论B3LYP,在6-311+G(2df)基组水平上研究非限域单体天冬酰胺(Asn)分子手性转变第二反应通道过程,寻找反应过程中各极值点结构,绘制完整的Asn分子手性转变路径反应势能面,并分析各极值点的几何和电子结构特性.结果表明:S型Asn分子手性C原子上的4H原子以羧基上的10O原子为桥梁,转移至手性C原子的另一侧,实现从S型到R型Asn分子的手性转变;该路径有2个中间体和3个过渡态,最大的反应能垒为313.222 1kJ/mol.  相似文献   

4.
基于密度泛函理论,在ONIOM(CAM-B3LYP/6-31G(d,p):UFF)基组水平上,研究1F-分子筛限域条件下的天冬酰胺(Asn)分子手性转变过程,寻找天冬酰胺分子手性反应过程中各过渡态与中间体的极值点结构,绘制1F-分子筛限域条件下完整的天冬酰胺分子手性转变路径反应势能面,并分析各极值点的几何和电子结构特性.结果表明:1F-分子筛限域条件下S型天冬酰胺分子手性C上的H原子以羧基上的O原子为桥梁,转移至手性C原子的另一侧,实现从S型到R型天冬酰胺分子的手性转变;最大的反应能垒为321.361 2kJ/mol,来源于第二个过渡态TS_1-S-Asn@1F-MOL.  相似文献   

5.
基于密度泛函理论B3LYP,在6-311+G(d,p)基组水平上研究非限域单体和水环境下亮氨酸(Leu)分子的手性转变机制.通过寻找反应过程中各极值点的结构,绘制水环境下Leu分子的手性转变路径反应势能面,并分析各极值点的几何和电子结构特性.结果表明:水环境下S型Leu分子手性C原子上的H原子以羧基上的O原子为桥梁,转移至手性C原子的另一侧,实现了从S型到R型Leu分子的手性转变;水环境下该路径有4个中间体和5个过渡态,来源于第一个过渡态TS1-S-Leu1H_2O-1的最大反应能垒为57.235 9kJ/mol,单体Leu分子手性转变第一个过渡态TS1-S-Leu的最大反应能垒为145.452 7kJ/mol.即单个水分子作为H转移桥梁可降低反应能垒.  相似文献   

6.
基于密度泛函理论B3LYP/6-311+G(2df)水平, 研究非限域条件下单体天冬酰胺分子的手性转变过程. 通过寻找过渡态和中间体反应过程的各极值点结构, 绘制天冬酰胺分子的手性转变路径反应势能面, 并分析各极值点的几何及电子结构特性. 结果表明: S型天冬酰胺分子手性碳上的氢原子以羧基上的氧原子为桥梁, 转移至手性碳原子的另一侧, 实现了从S型到R型天冬酰胺分子的手性转变; 该路径有4个中间体和5个过渡态, 最大的反应能垒为316.372 8 kJ/mol, 来源于第4个过渡态TS2-R-Asn.  相似文献   

7.
基于密度泛函理论中的B3LYP方法, 在6-31+G(d,p)基组水平上理论研究限域BN纳米管中苯丙氨酸(Phe)分子手性对映体的转变过程. 通过寻找反应过程中各过渡态和中间体的极值点基本结构, 绘制BN纳米管限域条件下Phe分子手性转变路径上各反应势能面. 结果表明: 在BN纳米管限域条件下, S-Phe@BNNT分子手性1C原子上的12H原子以羧基上的9O原子为桥梁, 转移至手性1C原子的另一侧, 实现了从S-Phe@BNNT到R-Phe@BNNT[KG*8]分子手性对映体的转变.  相似文献   

8.
基于密度泛函理论中的B3LYP方法, 在6-31+G(d,p)基组水平上理论研究限域BN纳米管中苯丙氨酸(Phe)分子手性对映体的转变过程. 通过寻找反应过程中各过渡态和中间体的极值点基本结构, 绘制BN纳米管限域条件下Phe分子手性转变路径上各反应势能面. 结果表明: 在BN纳米管限域条件下, S-Phe@BNNT分子手性1C原子上的12H原子以羧基上的9O原子为桥梁, 转移至手性1C原子的另一侧, 实现了从S-Phe@BNNT到R-Phe@BNNT[KG*8]分子手性对映体的转变.  相似文献   

9.
用量子力学与分子力学组合的ONIOM方法, 研究两种构象的赖氨酸(Lys)分子限域在螺旋手性单壁氮化硼纳米管(SWBNNT)内的手性转变机理. 结果表明: 限域 在小管径螺旋手性SWBNNT的Lys分子骨架形变明显; 当两种构象的Lys分子限域在SWBNNT(6,4)时, 旋光异构反应的表观能垒分别为17590,23044 kJ/mol, 旋光异构反应决速步骤的内禀能垒分别为21140,23044 kJ/mol, 来源于质子从手性C向氨基N迁移的过渡态, 比裸反应的决速步骤能垒(252.60 kJ/mol) 低. 即螺旋手性SWBNNT的管径越小, 限域催化作用越明显, 限域在SWCNT(6,4)内具有氨基与羧基间单氢键的Lys分子先旋光异构.  相似文献   

10.
采用量子力学与分子力学组合的ONIOM方法, 研究限域在扶手椅型单壁氮化硼纳米管(SWBNNT)内赖氨酸(Lys)分子手性转变的反应机理. 采用原子中心密度矩阵传播(ADMP)分子动力学方法, 研究Lys分子在SWBNNT(5,5)内手性转变反应通道入口与出口势能面上的动态反应路径, 给出中间体和产物的微观动态反应图像. 结果表明: 随着纳米管管径的减小, 限域其中的Lys分子骨架C原子间的键角明显增大; 手性C上的H与氨基N的距离逐渐变小; 在SWBNNT(5,5)内, 通过2个基元反应Lys分子实现了手性转变; 在SWBNNT(6,6)和SWBNNT(7,7)内, 通过3个和4个基元反应Lys分子实现了手性转变 ; 在SWBNNT(5,5)内, Lys分子手性转变反应决速步骤自由能垒降为最低值190.1 kJ/mol. 在 SWBNNT(7,7)内, 决速步骤能垒与裸反应基本相同.  相似文献   

11.
基于密度泛函理论B3LYP/6\|311+G(2df)水平上的计算, 研究单水协同作用下的苯丙氨酸分子手性转变反应过程. 寻找得到反应过程中4个中间体与5个过渡态的各极值点结构, 绘制单水协同作用下完整的苯丙氨酸分子手性转变路径反应势能面, 并分析各极值点的几何与电子结构特性. 结果表明: 单水协同作用下S型苯 丙氨酸分子手性C上的H原子以羧基上的O原子为桥梁, 转移至手性C原子的另一侧, 实现了从S型到R型苯丙氨酸分子的手性转变; 单水协同作用下该路径有4个中间体和5个过渡态, 最大的反应能垒为200.588 2 kJ/mol, 来源于第四个过渡态TS2-R-Phe&1H2O-2.  相似文献   

12.
采用组合的量子化学ONIOM方法,研究MOR分子筛12元环孔道对赖氨酸分子手性转变反应的限域催化.结果表明:限域在MOR分子筛12元环孔道的客体与裸环境下的构象不同,过渡态a_TS2@MOR的1C—5N键长缩短,中间体SINT1@MOR的12H与9O,11H与9O以及12H与10O间的距离缩短;手性转变反应有a,b,c 3个通道;通道a为手性转变反应的主反应通道,决速步骤的Gibbs自由能垒为229.7kJ/mol,比裸反应决速步骤的Gibbs自由能垒252.6kJ/mol明显降低,即MOR分子筛对赖氨酸分子的手性转变反应有一定的限域催化作用.  相似文献   

13.
基于密度泛函理论, 在B3LYP/6-31+g(d,p)水平上研究水环境下布洛芬分子的手性转变机理, 确定水环境下布洛芬分子从S型向R型转变过程中的过渡态和中间体等极值点结构; 在MP2/6-31++g(d,p)水平上计算各稳定点和过渡态体系的单点能, 并对体系能量进行零点振动能修正; 绘制水环境下布洛芬分子手性
转变反应路径上H转移和中间体异构过程的势能面. 结果表明: 水环境下布洛芬分子手性转变有两条路径, 其H转移过程均可通过1个和2个水分子作为桥梁实现, 最高能垒均来自于手性C的H向羰基O的转移过程, 且均以2H2O为桥梁时能垒最低.  相似文献   

14.
采用量子力学与分子力学组合的ONIOM方法,研究了限域在几种不同尺寸的扶手椅型单壁碳纳米管内赖氨酸分子的手性转变机理.结构分析表明:随着纳米管管径的减小,限域其中的赖氨酸分子构型的形变越来越明显,骨架碳原子间的键角明显增大;手性碳上的H与氨基N的距离逐渐变小.反应通道研究发现:标题反应在不同尺寸的纳米管内具有不同的通道,在SWCNT(5,5),SWCNT(6,6)和SWCNT(7,7)分别具有1个、4个和3个反应通道.势能面计算表明,赖氨酸限域在SWCNT(5,5)时,手性转变的吉布斯自由能垒被降到最低值192.8kJ·mol-1,是由手性碳上的质子向氨基氮和氨基上的质子向羰基氧双质子协同迁移的过渡态产生的.与裸反应的此通道决速步能垒252.6kJ·mol-1相比较有显著降低.结果表明:SWCNT(5,5)对赖氨酸的手性转变反应具有较好的限域催化作用,可作为实现赖氨酸旋光异构的纳米反应器.  相似文献   

15.
基于密度泛函理论的B3LYP方法,在6-311+G(2df)基组水平上考察双水协同作用下苯丙氨酸分子的手性转变过程.通过寻找反应过程中过渡态和中间体的极值点结构,绘制双水协同作用下完整的苯丙氨酸分子手性转变路径反应势能面,并分析各极值点的几何和电子结构特性.结果表明:双水协同作用下S型苯丙氨酸分子手性C上的H原子以羧基上的O原子为桥,转移至手性C原子的另一侧,实现从S型到R型苯丙氨酸分子的手性转变;双水协同作用下该路径有4个中间体和5个过渡态,最大反应能垒为173.808 1kJ/mol,来源于第二个过渡态TS_2-S-Phe2H_2O-2.  相似文献   

16.
用量子化学ONIOM(B3LYP/6-31++g*:UFF)方法,考察扶椅型单壁碳纳米管SWCNT(5,5),(6,6),(7,7)、锯齿型SWCNT(9,0),(10,0),(11,0)和螺旋型SWCNT(8,2),(8,3),(8,4),(9,1),(9,2),(9,3)中的α-Ala分子结构和手性转变机制.结果表明:与单体相比,当α-Ala分子限域在直径小的SWCNT中时,其C—C—C键角、C—C—N—C二面角和H—N—H键角增加较大,其他结构参数值略有增减;只存在H先在羧基内转移,手性碳上的H再以羰基11O为桥梁转移的反应通道;当α-Ala分子限域在SWCNT(5,5),(9,0),(8,2),(9,1)中时,羧基内H转移和H从手性碳转移到羰基的能垒较低;α-Ala分子限域在SWCNT中的H转移反应能垒随管径的减小而降低;不同手性的SWCNT对H转移反应能垒影响较小.  相似文献   

17.
基于密度泛函理论的B3LYP方法, 在6-311+G(2-df-)水平上, 研究双水环境中的苯丙氨酸分子的手性转变过程. 通过寻找过渡态和中间体的反应过程各极值点结构, 绘制苯丙氨酸分子手性转变路径反应势能面, 并分析各极值点的几何和电子结构特性. 结果表明: S-3-Phe&2H2O型苯丙氨酸分子手性C上的H原子以羧基上的O原子为桥梁, 转移至手性C原子的另一侧, 实现从S-3-Phe&2H2O型到R-3-Phe&2H2O型苯丙氨酸分子的手性转变; 该路径有4个中间体和5个过渡态, 最大反应能垒为221.854 8 kJ/mol, 来源于第四个过渡态TS2-S-3-Phe&2H2O.  相似文献   

18.
采用量子力学与分子力学组合的ONIOM方法,研究了布洛芬在MOR分子筛12元环孔道限域环境的手性转变.反应通道研究发现:标题反应有7条路径,质子从手性碳的一侧向另一侧迁移可分别以羰基、甲基和羰基联合、羧基以及羧基和苯环联合作桥实现.反应势能面计算发现:在羧基内实现质子迁移后,手性C上的质子以新羰基O为桥迁移到苯环,接着苯环上的质子又以羰基为桥在纸面里迁移到手性碳的手性转变过程是主反应路径.决速步骤是质子从手性碳向新羰基氧的迁移过程,决速步骤吉布斯自由能垒是263.4kJ·mol~(-1),相对于裸反应决速步骤的能垒287.1kJ·mol~(-1)有明显降低.结果表明:MOR分子筛12元环孔道对布洛芬的手性转变反应具有限域催化作用.  相似文献   

19.
基于密度泛函理论B3LYP,在6-311+G(2df)基组水平上研究双水复合条件下的天冬酰胺分子手性转变过程.寻找天冬酰胺分子手性反应过程中各过渡态与中间体的极值点结构,绘制双水复合条件下完整的天冬酰胺分子手性转变路径反应势能面,并分析各极值点的几何和电子结构特性.结果表明:双水复合条件下S型天冬酰胺分子手性C原子上的H原子以羧基上的O原子为桥梁,转移至手性C原子的另一侧,实现从S型到R型天冬酰胺分子的手性转变;双水复合条件下该路径有4个中间体和5个过渡态,最大的反应能垒为317.948 1kJ/mol,来源于第4个过渡态TS2-R-Asn2H2O-1.  相似文献   

20.
水环境下α-丙氨酸分子手性的转变机制   总被引:1,自引:0,他引:1  
基于密度泛函理论考察水环境下α-丙氨酸分子手性转变机制,通过寻找水环境下α-丙氨酸手性转变过程过渡态及中间体等极值点的结构,绘制水环境下α-丙氨酸分子手性碳上氢原子转移及形成中间体异构过程的反应势能面.结果表明:与孤立条件的手性转变过程相比,以单个和两个水分子为桥梁的氢原子从手性碳向羰基氧转移过程的能垒从325.5kJ/mol分别降为200.6,173.0kJ/mol;氢原子从羰基氧再迁移到手性碳另一侧的能垒从229.2kJ/mol分别降为105.3,73.5kJ/mol.这是由于水分子在α-丙氨酸分子对映体手性转变过程中具有催化作用,即生命体内存在微量右旋丙氨酸的机制是水参与了左旋丙氨酸手性转变过程,降低了反应能垒所致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号