首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
有机废液在超临界水中气化制氢的实验研究   总被引:3,自引:0,他引:3  
以麦秆发酵制氢产生的有机废液为实验原料,在管式连续流反应器中进行了超临界水气化制氢的实验研究.考查了温度、压力、浓度对气化效果的影响.实验表明利用生物质发酵制氢残液在超临界水中气化,可以实现制氢与制污的双重目的.  相似文献   

2.
生物质在超临界水流化床系统中部分氧化气化制氢   总被引:1,自引:0,他引:1  
从理论的角度对超临界水部分氧化过程进行分析,利用已建立的热力学模型计算了反应过程的化学平衡.热力学研究表明:随着氧化剂当量的增加,H2、CH4、CO的平衡产量减少,CO2的平衡产量增加,而且H2的体积分数也随之减少.在实验室新研制的超临界水流化床系统中,研究了生物质模型化合物(葡萄糖)以及原生生物质(玉米芯)的部分氧化气化制氢.实验结果表明:氧化剂的加入大大提高了生物质的气化率,但降低了气体产物中H2的体积分数;在质量分数为10%的葡萄糖部分氧化气化过程中.当氧化剂(H2O2)当量为0.2(质量分数为4.53%)时,H2的绝对产量达到了最大值.  相似文献   

3.
原生生物质在超临界水流化床系统中气化制氢   总被引:1,自引:0,他引:1  
以原生生物质玉米芯与羧甲基纤维素钠的混合为原料,利用实验室成功构建的超临界水流化床气化制氢系统,在压力25 MPa、温度550~650℃范围内,对其气化制氢特性进行研究,讨论了气化过程中气化时间、温度、流量、物料浓度对气化效果的影响.研究结果表明:温度对气化影响较大,升高温度有利于气化;小的流量对应长的反应器停留时间有利于产氢;随着物料质量分数的增加,生物质气化效果明显下降,而在超临界水流化床气化制氢系统中质量分数为18%的物料仍能长时间连续稳定气化,未发生反应器结渣堵塞现象.  相似文献   

4.
操作参数对生物质超临界水气化制氢产气性能有直接的决定作用.本文利用基于Gibbs自由能最小原理建立的化学平衡两相模型和实验结果,分析了反应温度、系统压力以及物料浓度等主要参数对纤维素超临界水气化制氢产气性能的作用,得到纤维素未完全气化之前,升高温度会提高气化率,但导致产气高热值降低,因此升高温度虽然对制氢有利,但对制取可燃气体是不利的;升高压力对气化率和高热值的影响不大,压力的选取以稍高于水的超临界压力为宜;高浓度物料明显难以气化,混合催化剂Raney-Ni和ZnCl2对高浓度物料气化有较好的催化潜力.所得结论对生物质超临界水气化过程的优化以及该技术的大规模利用提供了一定的依据.  相似文献   

5.
生物质与煤超临界水气化制氢的实验研究   总被引:1,自引:0,他引:1  
利用间隙式釜式反应器,在反应器内流体温度为450℃、初压为4MPa(终压为22~27MPa)、保温时间为20min、NaOH作为催化剂的条件下,分别对生物质模型化合物羧甲基纤维素钠(CMC)与煤以及原生生物质玉米芯与煤的超临界水气化制氢进行实验研究.结果表明:CMC/煤共超临界水气化制氢过程中,共气化的产氢率和气化率均高于同样情况下CMC、煤单独气化的加权平均值,玉米芯/煤共气化也出现类似结果,这说明CMC/煤、玉米芯/煤共超临界水气化制氢均存在协同效应.初步分析了协同效应产生的机理.  相似文献   

6.
煤与生物质共超临界水催化气化制氢的实验研究   总被引:9,自引:3,他引:9  
在压力为20~25MPa、停留时间为15~30s、:NaOH添加量(质量分数)为0.1%、反应器外壁温度为650℃的条件下,对煤与生物质的模型化合物羧甲基纤维素钠(CMC)在超临界水环境中的催化气化制氢性能进行了研究,探讨了物料浓度、压力以及停留时间对煤与CMC共气化制氢的影响.实验结果表明:煤与CMC二共超临界水催化气化制氢的主要气体产物是H2、CO2和CH4,H2的体积分数可高达60%以上;增加物料浓度、升高压力有利于提高产氢率,但延长停留时间不利于氢气的制取.  相似文献   

7.
煤及生物质共超临界水气化过程中的协同效应   总被引:3,自引:1,他引:2  
在自行研制的连续管流式煤及生物质共超临界水气化制氢装置上,对甘肃华亭烟煤、羧甲基纤维素钠(生物质模型化合物)及其两者的混合物在反应器壁温650℃、系统压力25MPa、停留时间30s、NaOH质量分数为0.19,6的条件下进行了实验研究.实验表明:气体产物主要由H2、CO2和CH4组成,其中H2的体积分数可高达60%以上;气体产物中未检测到N和S,含N和S的污染物以液相排除,极大地减少了大气污染.研究发现煤与羧甲基纤维素钠共超临界水气化过程中在产氢率和气化率上出现了明显的协同效应,进一步提出协同效应主要由超临界水中的自由基反应引起.结果表明,煤及生物质共超临界水气化制氢是一种富有前景的洁净能源转化新技术.  相似文献   

8.
农业生物质在超临界水中气化制氢的实验研究   总被引:22,自引:5,他引:22  
以农业生物质(包括玉米秸秆、玉米芯、麦秸、稻草、稻壳、花生壳、高粱秆)为原料,羧甲基纤维素钠为添加剂,利用连续管流反应器,在反应器壁温为650℃、压力为25MPa的条件下进行了生物质气化制氢实验研究.讨论了运行时间、生物质类型、颗粒大小、反应器壁面状况等因素对气化结果的影响.实验结果表明:农业生物质在超临界水中气化生成以氢气、二氧化碳、一氧化碳、甲烷以及少量的乙烷和乙烯为主要成分的气体;气化周期内大约经过100min气体产物组成以及产量趋于稳定;在相同的实验条件下不同生物质气化得到了相似的气体组分,气体产物中一氧化碳体积分数大约为1%,甲烷体积分数超过10%,氢气的体积分数最高可以达41.28%;小颗粒的生物质气化能生成更多的氢气;反应器壁面对生物质气化有明显的催化作用.  相似文献   

9.
高含量煤在超临界水中气化制氢的实验研究   总被引:4,自引:0,他引:4  
针对当前煤在超临界水气化制氢研究中存在的物料质量分数低于5%、实验装置以高压釜居多且不能连续稳定产氢等问题,以高含量煤的气化制氢为研究目的,在反应器壁温650~800℃、反应压力23~27 MPa、物料流量3~7 kg/h的条件下,利用连续管流式反应系统对高含量煤进行了超临界水气化制氢实验研究,考察了温度、压力、物料流量、催化剂及氧化剂和物料含量对气化效果的影响规律,成功地将质量分数为16%的煤输送进反应器并稳定产气,煤的气化率和氢气产率分别为0.317和0.022.  相似文献   

10.
超临界水中花生壳气化制氢催化剂的筛选与研究   总被引:2,自引:0,他引:2  
在釜式反应装置上,以原生生物质花生壳为原料、CMC为添加剂,对不同种类的催化剂在超临界水中生物质催化气化制氢的影响进行了实验研究.温度水平选择为400℃,压力控制在22~24 Mea范围内,物料的质量分数为10%,催化剂包括ZnCl2、K2CO3、KOH、Na2CO3、NaOH、LiOH、Ca(OH)2、Raney-Ni、橄榄石和白云石.实验结果表明:各种催化剂的催化效果有很大的区别,骨架催化剂Raney-Ni的大比表面积和特殊的电子层结构,使得生物质在超临界水中较低温度条件下可以达到良好的气化效果,在所考察的几种类型催化剂中,Raney-Ni的产氢效率最高,达到28.03 g/kg,是一种极具潜力的超临界水生物质制氢催化剂.  相似文献   

11.
<正>煤化工领域兰炭熄焦低温余热利用是工业节能环保的重要研究领域。本项目利用热管来回收兰炭低温熄焦余热,然后将获得的水蒸气用来耦合生物质实现气化制氢。该项目重点研究了热管的传热性能和水蒸气用于生物质气化制氢的过程。通过实验研究和理论计算,获得了影响热管传热效率的因素,以及  相似文献   

12.
基于Aspen Plus的甘油与生物质固定床共气化制氢工艺模拟   总被引:1,自引:0,他引:1  
利用Aspen Plus软件平台,对甘油与生物质固定床共气化制氢过程进行模拟研究.考察不同反应温度、甘油与生物质的质量比(m(G)/m(B))、气化剂物质的量的比(n(H2O)/n(C))和反应压力等条件对纯甘油与生物质、粗甘油与生物质混合共气化制氢的影响.模拟结果表明:生物质与不同甘油共气化时,温度、压力、n(H2O)/n(C)和m(G)/m(B)对两种混合物制氢的影响规律基本相同,因此可用纯甘油替代粗甘油来研究气化制氢特性;同时得出其最佳气化制氢条件是反应温度800~850,℃,m(G)/m(B)为1.0~1.2,n(H2O)/n(C)为0.8~1.0,压力≤0.1,MPa,在此条件下,氢气产率为55%左右.  相似文献   

13.
结合作者在依阿华州立大学可持续环境技术中心的合作科研,介绍了生物质气化、焦油的催化转化及制氢的实验结果。生物质焦油的催化脱除,由一个保护床和转化反应器组成的高温催化气体净化装置完成;生物质气化气要实现高氢浓度的转化,需要通过水煤气变换反应将CO转化为H2。  相似文献   

14.
超临界水中花生壳气化制氢的实验及机理研究   总被引:6,自引:0,他引:6  
以原生物质花生壳为原料,羧甲基纤维素钠为添加剂,利用釜式反应器,在温度为450℃、压力范围为24~27 MPa的条件下,考察了K2CO3、ZnCl2、Raney-Ni三种催化剂对超临界水中生物质催化气化制氢的影响.结果表明,ZnCl2对氢气的选择性最高,K2CO3次之,Raney-Ni最低,但在低温条件下Raney-Ni最有利于生物质的气化,气化率高达126.84%,氢气产率高达34.37 g.kg-1.选取ZnCl2和Raney-Ni混合使用时,氢选择性明显提高,甲烷迅速减少.通过对催化机理的探索,提出了生物质催化气化的反应路径,对实验中出现的现象和所得出的结论给予了合理解释.  相似文献   

15.
基于可再生能源的分布式多目标供能系统(二)   总被引:7,自引:0,他引:7  
提出了两种以氢为能量载体的基于可再生能源的多目标分布式供能系统的新构思,分别利用太阳光直接分解水制氢及太阳能高温集热(或高温燃料电池排气余热)分解生物质和水制氢,并与高温燃料电池,微型燃气轮机以及后续的供热,制冷,调湿等子系统共同构成高效,无污染的可以供氢,供电,供热,供轴功的多联产综合供能系统,简要分析了可再生能源高效低成本制氢的有关理论与技术,报道了本室光催化分解水制氢与超临界水生物催化气化制氢研究的最新进展。  相似文献   

16.
生物质气化技术研究进展   总被引:1,自引:0,他引:1  
生物质气化技术是生物质洁净高效利用的重要方法,具有广阔的发展前景。本文综述了近年来国内外生物质气化技术中气化剂气化、热解气化、催化气化、等离子体气化、超临界水气化等方法的研究进展。认为目前生物质气化技术需要重点解决的主要难题是焦油脱除和净化以及高效催化剂的制备,化学法除焦和开发复合型催化剂是解决这些难题的有效方法,生物质气化技术的大规模商业化利用是未来的发展方向。  相似文献   

17.
提出一种新型的生物质水蒸气气化制氢方法.该方法在生物质水蒸气气化过程中添加CO2吸收剂,旨在通过吸收CO2促进产氢反应向着氢气产生方向进行,从而提高产氢量.分析了Ca(OH)2、水蒸气、温度和保持时间对产氢量以及产气组分百分比的影响,结果表明:在生物质水蒸气气化过程中添加CO2吸收剂能显著提高产氢量;随着Ca(OH)2的增加产氢量先升高后略微降低,Ca(OH)2对水煤气反应的影响要明显强于对甲烷水蒸气重整反应的影响;产氢量随水蒸气的增加先升高后降低;产氢量随温度的升高迅速增加;充足的保持时间可以使制氢反应进行彻底.  相似文献   

18.
清洁能源的开发使用已经成为可持续发展的紧迫课题,开发经济高效的生物质制氢的技术极具前景和发展潜力。本文实验验证了利用太阳能集热器收集太阳能,用于高温分解生物质催化制氢的可行性,并分析了太阳能热源生物质高效制氢的高效性和发展性。  相似文献   

19.
超临界水热化学制氢技术采用超临界水作为介质,通过热化学的方式将农林业固废中的有机成分转化成富氢气体,是一种非常具有前景的农林业固废能源化利用技术。本文主要围绕反应机理对该技术展开了系统的分析,介绍了超临界水的特殊物理化学性质;研究了超临界水在整个农林业固废热化学反应过程中的反应机理以及主要生物质组分,例如纤维素、半纤维素、木质素和氨基酸在超临界水中的不同降解机理和路径;针对不同的反应条件,在一定范围内提高温度、降低浓度和延长停留时间均能显著提高制氢性能,但是同时会增加系统的运行成本,而压力的变化对反应结果影响不大。对不同催化剂分析结果表明,碱金属均相催化剂在生物质的气化中虽然能够发挥显著的催化作用,但是同时会加剧设备的腐蚀问题和堵塞问题;非均相催化剂具有高催化活性、高热稳定性、无腐蚀性及易于回收等优点,更适合应用于工业规模的超临界水热化学制氢系统。未来研究重点方向为:对于不同有机组分机理研究的定量描述;灰分之间相互反应以及灰分与催化剂之间反应的机理研究;进一步研究催化剂的失活机理和明确催化剂的添加量问题。  相似文献   

20.
王楠  潘晶 《科技资讯》2011,(30):149-149
生物质制氢是一项利用微生物的生理代谢作用分解有机物从而产生氢气的生物工程技术,具有产氢稳定性好、产氢能力高等优点,是一种符合可持续发展战略的可再生能源。本文介绍了生物质制氢的方法及研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号