首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
在煤层气储层渗透性影响因素的分析基础上,通过煤层地应力、热演化程度、埋藏深度与渗透率的相关性分析,探讨渗透率的发育机理,认为煤储层渗透率是煤阶与地应力联合作用的结果,地应力控制煤储层割理开启程度和方向,改变储层的孔隙结构;煤岩热演化通过改变岩石力学性质来控制割理发育,二者共同控制煤储层割理的大小,进而影响煤储层渗透率的发育,而埋藏深度与渗透率相关性不强.选取煤层渗透率主控因素进行研究,以鄂尔多斯盆地东缘二叠系煤层气储层为例,利用多元回归分析的方法建立了“煤阶与地应力”渗透性二元预测模型,对研究区渗透率的发育情况进行了预测.研究表明,地应力控制了渗透率的分布,而煤岩热演化程度对渗透率分布起到一定的调节作用,煤层气储层高渗区主要分布在研究区斜坡带地应力松弛部位,而在应力相对集中深部煤储层为低渗区.  相似文献   

2.
目前煤层等软岩层地应力研究方法匮乏,地应力测量难度很大,因此有关煤层垮塌失稳力学机理的研究还无法深入.针对这一现状,利用含煤层系地层中硬岩层的地应力实测结果,以组合弹簧模型为基础,计算出构造作用引起岩层水平方向的应变量,并以此作为整个含煤层系地层地应力有限元分析的边界条件,建立含煤岩层地应力有限元分析模型,将硬岩层的地应力实测、理论模型计算以及有限元数值模拟三者有机结合起来,反演得到煤层等软岩层的地应力状态,从而建立起一套煤层等软岩层地应力研究的新方法.  相似文献   

3.
针对煤层在地表有露头或出口的情况,根据煤层瓦斯渗流方程,提出了考虑煤层温度和地应力梯度变化的煤层瓦斯压力的计算方法。对某矿井煤层瓦斯的理论计算和实例结果表明:煤层温度和地应力梯度变化对煤层瓦斯压力有较大影响,对于深部开采煤层和高温矿井,考虑地温和地应力梯度的影响,将使所确定的煤层瓦斯压力值更准确。  相似文献   

4.
基于影响煤层渗透性的四个主要指标测定的基础上,运用模糊数学理论对公乌素地区16号煤层煤样的注水渗透性进行了综合评价。评价结果表明,在主要开采深度150~350 m的条件下,煤体渗透性均在3类范围内,属于渗透性中等的煤层。研究结果对该地区16号煤层的注水提供了理论依据。  相似文献   

5.
天府三汇一矿地应力场三维有限元分析及其分布特征   总被引:1,自引:0,他引:1  
重庆天府三汇一矿位于华蓥山帚状褶皱带的收敛端,属地应力相对集中地带,矿区的煤与瓦斯突出不但发生的次数多,突出强度也大,且正在开采的煤层均属突出煤层,对该区域原始应力场的三维分布规律研究可为矿井生产设计及煤与瓦斯突出危险性区域预测提供参考依据。在收集三汇一矿地质资料的基础上,建立起三维有限元计算模型,利用ANSYS大型通用有限元软件采用弹塑性有限元法对该矿初始地应力场进行数值模拟。根据模拟结果,分析了三汇一矿地应力场的三维分布特征,并对K煤层的地应力分布进行了分析。  相似文献   

6.
煤层气洞穴完井顶板塌落数值模拟研究   总被引:2,自引:0,他引:2  
针对我国主要煤层气产区的煤层埋深、煤层厚度、煤层及顶板岩石力学特性,对不同埋深和煤层厚度条件下的裸眼洞穴使用有限差分方法进行了数值模拟.计算结果表明,造成洞穴顶板塌落的主要力学因素是垂直地应力与水平地应力之差,可由侧压系数来描述;顶板破坏形式为洞周剪切破坏;煤层厚度对其影响较小.  相似文献   

7.
煤和瓦斯突出过程中地应力作用机理   总被引:1,自引:0,他引:1  
基于岩石破裂损伤理论和气固耦合方法,利用RFPA2D-GasFlow数值模拟系统,结合煤体中应力分布情况和瓦斯突出破坏过程及结果,分析了煤与瓦斯突出三要素(地应力、瓦斯和煤体物理力学性质)中的地应力在瓦斯突出过程中的作用.研究结果表明,在地应力小于1 MPa时,地应力对瓦斯突出具有阻碍作用;当地应力大于1 MPa时,地应力对瓦斯突出具有双重作用:一方面其产生的水平压应力增强了煤体抵抗破坏的能力;另一方面其产生的剪切应力促进煤体发生破坏.同时应用研究结果对浅埋煤层瓦斯突出问题进行了分析,认为浅埋煤层承受的地应力较小,煤层中存在着水平拉应力和垂直拉应力且是大范围存在的,故导致浅埋煤层发生瓦斯突出且...  相似文献   

8.
沁水盆地南部煤储层渗透性与地应力之间关系和控制机理   总被引:1,自引:0,他引:1  
通过对沁水盆地南部43口煤层气井渗透率和地应力统计分析,建立了煤储层渗透性与现今地应力之间的相关关系和模型.从煤储层的孔隙结构分析入手,建立了煤储层割理面压缩变形与裂隙渗流模型,分析地应力对煤储层渗透性影响的机理.研究结果表明,煤储层试井渗透率随着地应力的增加呈指数函数关系降低;随着煤层埋藏深度增大,其渗透率降低,煤储层渗透率随深度变化趋势的实质是应力的函数.在650m以浅煤储层地应力处于伸张带,最小水平主应力小于12MPa,煤储层渗透率平均大于1.0×10^-3μm^2;在650-1000m煤储层地应力由伸张带转化为压缩带的过渡带,最小水平主应力为12—20MPa,煤储层渗透率平均大于0.1×10^-3μm^2;在1000-1500m煤储层地应力转化为压缩带,最小水平主应力大于20MPa,煤储层渗透率平均大于0.01×10^-3μm^2.当割理面法向力σn为压应力时,割理产生法向压缩(压密)变形,开始先为点或线接触,经过挤压,局部破碎或劈裂,接触面增加,割理面压缩量呈指数曲线特征.煤储层渗透率随着割理面正应力的增加呈指数函数关系降低,其理论模型与试井渗透率统计模型完全一致.  相似文献   

9.
从孔隙结构,煤体结构及煤层割理三方面,对韩城北部矿区煤储层的渗透性进行了分析,得出2#煤层的渗透性较好,其次为3#煤层,11#煤层较差。煤储层渗透性好的地段在地质构造简单、所受挤压剪切应力小、煤体破坏轻微、煤质优良的地方。  相似文献   

10.
煤层钻孔卸压效果影响因素分析   总被引:1,自引:0,他引:1  
钻孔卸压抽采瓦斯是解决瓦斯灾害的有效方法之一。为了研究地应力等因素对煤层钻孔卸压效果的影响,首先从理论上分析了钻孔周围的应力和卸压区范围,利用弹塑性力学理论得到了轴对称情况下卸压区半径的解析解,然后讨论了影响卸压区范围的地应力等各种因素并利用RFPA^2D分别进行了数值分析。结果表明:(1)非轴对称地应力条件下,卸压区半径随着埋深的增大而增大;(2)卸压区半径随着煤层强度的增大而减小;(3)卸压区半径随着煤层周围地应力以及钻孔孔径的增大而增大。  相似文献   

11.
阜新盆地煤层气渗流规律实验   总被引:2,自引:0,他引:2  
以阜新盆地王营煤矿采集加工的原煤煤样为研究对象,利用3轴渗透仪,对煤样的渗透率和有效应力之间的变化关系以及煤样中甲烷渗流规律进行了实验研究.实验结果表明,煤样渗透率具有应力敏感性,渗透率随有效应力的增加呈非线性递减关系,具有负指数规律,这与前人的研究结果吻合较好;在不同围压、含水率情况下,实验得到的甲烷渗流规律曲线具有明显的非线性特征,真实地反映了实验过程中煤体变形对甲烷渗流的作用.考虑有效应力对煤体变形的影响,建立了描述煤层甲烷非线性渗流特征的运动方程,且所建立的运动方程与实验数据具有很好的吻合性,拟合相关系数高达99.6%以上,说明实验方法和建立的运动方程是合理的.  相似文献   

12.
为了更加准确的计算排采过程中煤储层渗透率的变化,考虑生产过程中外在产量数据对煤层内在渗透率的反映,在物质平衡方程、产量方程的基础上建立了利用生产数据反求煤层渗透率的方法。利用物质平衡方程对生产中储层的平均压力进行计算,纯产水阶段引入无量纲产水指数对产量方程进行转换。气水同产阶段则利用气水产量比进行转换,从而消除泄流半径、表皮系数等不确定因素对计算的影响。通过理论推导得到渗透率与地面累积产液量的关系可以用一元三次方程描述。对沁水盆地煤层气井进行计算,得到煤层渗透率呈先降低后上升的趋势。对计算结果进行分析得出,储层渗透率在排水阶段后逐渐增加,但渗透率增长率呈现降低的趋势,渗透率比与地面累积产液量呈较好的一元三次多项式关系,这与理论数学关系相吻合。  相似文献   

13.
煤岩裂缝的渗流能力是影响煤层气产能的重要因素.采用API导流仪及岩心驱替装置,模拟煤层气排采过程中煤层有效应力的连续变化,评价裂缝闭合压力逐渐升高、地层压力连续下降以及频繁开关井(间歇性排采)等工况条件下煤岩压裂裂缝的动态导流能力和含天然裂缝煤心的渗透率变化.实验结果表明,提高裂缝闭合压力、降低孔隙流体压力以及频繁开关井等都会降低煤岩裂缝的渗流能力,尤其对压裂裂缝的导流能力影响更为显著.基于此,利用实验数据分别回归了煤岩压裂裂缝导流能力和含天然裂缝煤岩渗透率与有效应力的经验关系式,建立近井煤层等效渗透率计算模型.利用该模型可以根据现场测算的等效渗透率,初步判断煤层压裂裂缝的有效导流能力或缝长,可以为煤层气压裂效果评价、分析排采过程中煤岩裂缝参数的动态变化提供一种新方法.  相似文献   

14.
由于煤层的应力敏感性,在煤层气井的压裂过程中,随着高压流体的持续注入,压裂裂缝的产生势必会对附近的煤层渗透率产生影响。针对煤层气井压裂引起的渗透率损伤问题,通过理论计算的方法,建立了压裂引起的诱导应力与渗透率之间的关系式,通过计算实例,分析了压裂引起的渗透率的损伤特征。研究认为:压裂产生的诱导应力和引起的渗透率损伤均在裂缝两侧呈对称性分布;压裂对裂缝附近煤层渗透率会产生直接的影响,渗透率损伤现象明显;压裂引起的渗透率损伤可能是某些已压裂的煤层气井增产效果不明显的原因之一。  相似文献   

15.
煤岩变形破坏过程中渗流演化规律试验研究   总被引:1,自引:1,他引:0  
高煤阶煤层气的开发主要采用压裂的方式进行增产。在压裂过程中,随着煤岩应力的不断变化,其孔隙结构和渗透特性发生变化,进而影响煤岩的力学破坏特征。以高阶煤为研究对象,开展不同围压作用下三轴渗流-应力耦合流变试验,研究煤岩变形和破坏过程中的应力、应变与渗透率之间的相互关系,分析了煤样应力、应变变化过程中渗透率随围压和体积应变的变化规律。试验结果表明:煤岩的应力-应变关系具有脆-塑性特征,煤岩体积应变经过压密和扩容阶段,环向应变能够比轴向应变更灵敏地反映出煤岩变形破坏的过程。煤岩渗透率在压缩过程中出现波浪状变化,在高应力作用下发生破裂后,其渗透率不一定比破裂前增加,相反有可能会减小。研究结果可为多场耦合下煤岩破裂模型的建立与分析、压裂施工参数设计和工艺的优化提供技术支撑。  相似文献   

16.
流固耦合作用下注气开采煤层气增产规律研究   总被引:3,自引:1,他引:3  
提高低渗透煤层气产量是我国煤层气开采中急需解决的关键问题,加速煤层甲烷解吸过程的注气增产方法是提高低渗透煤层气产量的有效途径。由于排采降压在孔隙流体压力变化的范围内会引起储层孔隙介质的应力和应变的变化,造成有效渗透率和孔隙度的降低,同时也影响注气和产气的动态参数。研究这些规律,首先建立了注气开采煤层气多组分流体扩散渗流的流固耦合模型,利用数值方法研究了注气开采煤层气的增产机理。研究表明,注入二氧化碳气体不但减少了煤层甲烷的分压.加速了煤层甲烷的解吸;而且二氧化碳气体比甲烷气体更易吸附,竞争吸附置换煤层甲烷分子,从而提高了煤层气产量,同时必须重视耦合作用对注气增产造成的不利影响。  相似文献   

17.
为研究煤层注CO2置换CH4过程中煤样对气体的吸附特性及渗透率变化特征,利用沁水盆地圆柱体原煤试样,在恒定体积应力(36 MPa)及不同注入压力(1~5 MPa)条件下,进行CO2置换CH4试验。结果表明:煤体对CO2的渗透率高于CH4气体;置换试验中,随注入压力的降低,煤体中CO2吸附相浓度逐渐升高,而CH4气体吸附相浓度呈相反变化趋势;在试验压降范围内,煤体对CO2、CH4气体的吸附量分别降低了48.73%、68.04%,煤体解吸CH4能力强于CO2气体。同时,在置换过程中,煤样置换渗透率受有效应力效应、基质收缩效应及滑脱效应等作用影响,其随注入压力的降低呈现先降低再增大的变化关系,且渗透率最低值出现在压力3.25 MPa时;在体积应力36 MPa条件下,注入压力下降后期渗透率相对于初期提高了17.03%。  相似文献   

18.
抚顺矿区煤层气资源条件综合分析   总被引:1,自引:0,他引:1  
通过对抚顺矿区煤层气地质特征、储层特征及煤层气资源量的系统而深入分析,认为该区煤层气资源条件良好,主煤层巨厚而集中、煤阶相对较高、煤岩类型有利于煤层气的生成、主煤层顶板的巨厚油页岩有利于煤层气的保存、且含气量相对较高、渗透性好、1200m以浅的煤层气资源量还有41.65×108m3。同时对矿区井下瓦斯抽放利用和煤层气利用的下游市场进行了评述,指出抚顺矿区是使我国煤层气产业走出困境,寻求突破的最佳试验战场。  相似文献   

19.
低渗透煤层压裂对于煤矿瓦斯防治以及降低煤矿事故发生率具有重要意义。详细阐述了四种低渗透煤层压裂技术的作用机理,分析了压裂技术以及压裂效果数值模拟上存在的问题,针对存在的问题,提出未来要研究适应中国煤层气储气特点的高效压裂液、支撑液及配套设施与装备;气体驱替发展应合理解决两种气体的协调关系;数值模拟应综合多种影响因素进行压裂效果模拟分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号