首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用溶剂热还原方法,以FeCl3.6H2O和乙二醇为原料,采用双表面活性剂,在180℃条件下合成了粒径从72 nm到447 nm的纳米Fe3O4粒子,研究了NaAc.3H2O在体系中的作用,探讨了反应时间,铁源浓度和表面活性剂等反应条件对产物的影响.利用X射线粉末衍射(XRD),傅里叶变换红外光谱仪(FT-IR)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)和振动样品磁强计(VSM)对产物进行了分析和表征.结果表明NaAc.3H2O在反应中起着引导产物生成和分散剂的作用,Fe3O4粒径受反应时间,铁源浓度和表面活性剂的影响.合成的Fe3O4粒子显示出高的磁性能,在生物医药方面具有潜在的应用价值.  相似文献   

2.
采用化学共沉淀法制备了约25±5 nm磁性四氧化三铁(Fe3O4)纳米粒子,并采用3-氨丙基三乙氧基硅烷(APTES)将Fe3O4纳米粒子表面修饰上氨基(-NH2)官能团,获得了表面氨基化的磁性Fe3O4纳米粒子.利用X-射线粉末衍射仪(XRD),透射电子显微镜(TEM),带有能谱仪(EDS)的扫描电子显微镜(SEM),光电子能谱仪(XPS),以及磁学测量系统(MPMS)对粒子的结构和性能进行了表征和分析.结果表明:表面氨基化后的磁性粒子粒径略有增加,室温下磁化强度由原来的64 emu/g变为62.5 emu/g,较好的保留了原始磁性特征.本研究结果对揭示纳米材料结构与性能关系、以及表面功能化磁性纳米材料制备与应用具有重要意义.  相似文献   

3.
采用电子回旋共振微波等离子体化学气相沉积技术(ECR CVD),CH4和H2为气源,分别以Fe3O4,Co纳米粒子及Fe(NO)3溶胶为催化剂在多孔硅基底上制备了碳纳米管;在Si(111)和石英基底上以Fe3O4纳米粒子为催化剂实现了碳纳米管的生长·使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)对样品的形貌、尺寸及结构进行表征·讨论了催化剂和基底对碳纳米管形貌、密度和取向性的影响·结果表明:催化剂影响碳纳米管的成核密度和生长速度,基底通过影响催化剂的特性和分布均匀性,对碳纳米管的形貌和生长模式产生重要影响,以Fe3O4为催化剂在多孔硅上实现了碳纳米管的最优定向生长·  相似文献   

4.
采用水热合成法,制备了具有中空状的氧化铁(Fe2O3)粒子,然后以卤素灯为光源,以邻苯二甲酸二正辛酯(DOP)水溶液为研究对象,详细探讨了Fe2O3的浓度、DOP的初始浓度、p H值及H2O2浓度等因素对DOP光催化降解效率的影响,并采用GC-MS联用技术对DOP的光催化降解机理进行了研究.结果表明,在不需添加H2O2时,当Fe2O3粒子添加量为100 mg/L、DOP初始质量浓度为20 mg/L及p H值为7时,DOP光催化降解速率最大;降解过程中首先从苯环支链开始降解,之后发生苯环开环,最终矿化为CO2和H2O.  相似文献   

5.
SiO_2包覆FePt磁性纳米颗粒的制备和其磁性能   总被引:1,自引:1,他引:0  
分别以乙酰丙酮铁(Fe(acac)3)和氯铂酸(H2PtCl6.6H2O)作为Fe源和Pt源,硼氢化钠(NaBH4)作为还原剂,通过化学还原法制备FePt纳米粒子.配制出OP-10/正丁醇/环己烷/浓氨水/的反相微乳液.采用反相微乳液法实现SiO2对FePt纳米粒子的硅层包覆.运用X射线衍射仪(XRD),透射电子显微镜(TEM)和振动样品磁强计(VSM)对FePt@SiO2复合纳米粒子进行表征.结果表明:SiO2成功包覆在FePt表面,且磁性纳米复合粒子饱和磁化强度几乎不变,矫顽力趋近于零,仍显示超顺磁性.  相似文献   

6.
合成Fe2O3纳米粒子复合纤维素膜.采用XRD、TEM和磁力线等多种方法对Fe2O3纳米粒子复合纤维素膜的结构和性能进行表征,并研究Fe2O3纳米粒子复合纤维素膜对亚甲基蓝的降解作用.结果表明:当溶液中H2SO4加量为25.8mol/L、H2O2加量为2.4mol/L时,用5g/L的复合纤维素膜对1.4×10-5 mol/L的亚甲基蓝溶液进行降解,25min内降解率达到100%.  相似文献   

7.
以FeSO44@7H 2O(AR),Fe(NO3)3@9H2O(AR),NH3@H2O(AR)为原料,用水热法制备纳米Fe3O44粒子;通过选用合适的分散剂来克服磁性颗粒的沉降,采用超声波分散的方法,制备在重力场和磁场中稳定性好的磁流体.研究了影响水基FeaO4磁流体性能的主要因素,得到最佳条件Fe(NO3)3@9H2O和FeSO4@7H2O的量比为1.75,水热反应温度为160℃,反应时间为5 h,1.5 g Fe3O4分散于100 mL水中所需分散剂的用量为0.75 mL.所制备的产物经XRD和粒度仪检测,结果表明产物为单一相的Fe3O44,水基Fe3O4磁流体体系的粒径在100nm以下.  相似文献   

8.
水基Fe3O4磁流体的制备和磁光特性   总被引:1,自引:0,他引:1  
以FeSO4·7H2O(AR),Fe(NO3)3·9H2O(AR),NH3·H2O(AR)为原料,用水热法制备纳米Fe3O4粒子;通过选用合适的分散剂来克服磁性颗粒的沉降,采用超声波分散的方法,制备在重力场和磁场中稳定性好的磁流体.研究了影响水基Fe3O4磁流体性能的主要因素,得到最佳条件:Fe(NO3)3·9H2O和FeSO4·7H2O的量比为1.75,水热反应温度为160℃,反应时间为5h,1.5gFe3O4分散于100mL水中所需分散剂的用量为0.75mL.所制备的产物经XRD和粒度仪检测,结果表明:产物为单一相的Fe3O4,水基Fe3O4磁流体体系的粒径在100nm以下.  相似文献   

9.
以尿素铁配合物([Fe(CON2H4)6](NO3)3)为前躯体,采用溶剂热法和直接热分解法制备Fe3O4纳米粒子,并对两种制备方法进行了比较.用XRD、N2吸附-解吸、磁性测定和透射电镜等手段对制得的样品进行表征.结果表明,制备方法和制备条件对产物性能的影响较大;用溶剂热法制备的Fe3O4纳米粒子的晶粒较小,具有超顺磁性;用直接热分解法制备的Fe3O4纳米粒子的晶粒较大,具有强磁性.  相似文献   

10.
本文利用水热合成法制备了Fe2O3纳米粒子(Fe2O3NPs)和纳米Fe2O3/石墨烯(rGO-Fe2O3NPs)复合材料,分别用于修饰电极,制备了检测亚硝酸钠(NaNO2)的电化学传感器,并详细考察了其性能指标.X射线衍射(XRD)和扫描电子显微镜(SEM)实验结果表明制备的rGO-Fe2O3NPs分布均匀,Fe2O3NPs与rGO直接混合可以实现Fe2O3纳米粒子在rGO表面的负载,混合后其形貌发生了较大的改变.通过实验检测,结果表明氧化铁纳米粒子的修饰电极表现出较好的传感器效果,掺杂石墨烯材料的传感性能略提高一些.  相似文献   

11.
表面包覆惰性层是解决四氧化三铁(Fe3O4)粒子团聚、易氧化、亲水性差等问题的一种有效方法,但惰性层的引入一般会导致包覆后样品磁性能下降,从而限制了Fe3O4的应用.以正硅酸乙酯(TEOS)和氨水为原料,制备了具有良好磁响应性的Fe3O4/SiO2核壳结构.样品的结构、形貌、尺寸和表面吸附官能团采用X-ray粉末衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和红外光谱(FTIR)等测试手段进行了表征.研究发现,TEOS加入方式影响SiO2层生长过程,从而影响包覆的均匀程度.Fe3O4/SiO2核壳结构表现出顺磁性和良好的磁响应性(52emu/g).  相似文献   

12.
纳米Fe3O4颗粒及其磁流体的制备与研究   总被引:1,自引:0,他引:1  
以氨水为沉淀剂,利用改进的化学共沉淀法制备粒径分布均匀的超顺磁性纳米Fe3O4颗粒.采用X射线粉末衍射仪(XRD)、傅里叶红外光谱仪(FT-IR)、振动样品磁强计(VSM)及透射电子显微镜(TEM)等方法对试样进行了结构与性能表征.结果表明:当n(Fe3+)/n(Fe2+)=1.75,温度为60℃,pH值为9时,超声波预处理制备的Fe3O4颗粒平均粒径在23 nm左右,饱和磁化强度(Ms)达到61.63 emu/g,具有超顺磁性.同时利用油酸钠和聚乙二醇4000(PEG 4000)的协同作用制得了稳定分散的纳米Fe3O4磁流体,当二者加入量与纳米Fe3O4颗粒质量比均为2.00∶3.48时,制备的纳米Fe3O4磁流体最稳定.  相似文献   

13.
分别以Fe(NO_3)_3·9H_2O和FeSO_4·7H_2O为铁源,采用均相沉淀法和氧化-液相沉淀法制备了两种不同形貌的FePO_4粉体,再以FePO_4为前驱体,与LiOH·H_2O、蔗糖混合,采用碳热还原法合成了LiFePO_4正电极材料.用XRD和SEM对所制备的FePO_4粉体进行结构和表面形貌表征,测试了LiFePO_4样品的充放电性能.XRD和SEM测定结果表明,采用均相沉淀法制备的FePO_4为六方晶系纯相,颗粒形貌为圆片状,颗粒大小均匀;而液相氧化法制备的FePO_4也为六方晶系纯相,但颗粒形貌无规则.由圆片状FePO_4和无规则FePO_4所合成的LiFePO_4的颗粒形貌与其前驱体相同.充放电测试表明在0.5C下圆片状LiFePO_4的首次放电比容量为140 mAh/g,无规则LiFePO_4的首次放电比容量为89 mAh/g.经过50次循环后,前者的放电比容量仅下降1.43%,后者基本不变.  相似文献   

14.
水热法制备α-Fe_2O_3纳米球及其光催化性质研究   总被引:1,自引:0,他引:1  
以硝酸铁、草酸为原料,采用水热反应法合成球形α-Fe2O3纳米颗粒.利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)对产物的物相和形貌进行表征,研究水热反应温度对物相形成和形貌影响的规律;同时以甲基橙溶液为目标降解物,以紫外灯为实验光源对产物进行了光降解性能测试.结果表明:水热反应温度的提高有利于α-Fe2O3晶体颗粒的晶化,并使其粒径分布均匀,形貌趋向于球形.在光催化性能测试中,随着光照时间的延长,纳米α-Fe2O3对甲基橙的降解率不断提高.  相似文献   

15.
以氯化钴(CoCl2.6H2O)和氢氧化钠作为反应前驱物,采用水热法合成微米级树叶状钴单质,在500℃退火条件下得到形貌相似的Co3O4粒子,并运用XRD、SEM和VSM对所得粒子的结构、形貌和磁性能进行了初步研究。结果表明,树叶状钴单质表现出室温铁磁行为,具有较高的磁参数,其中饱和磁化强度为139.3emu/g、矫顽力为29.5kA/m。同时发现,在500℃×1h退火后的Co3O4还出现极弱的铁磁性行为,可能是未完全氧化的Co单质所产生。  相似文献   

16.
低温合成TiO2/Fe3O4磁载光催化剂的光催化性能研究   总被引:4,自引:0,他引:4  
采用化学共沉淀法合成的磁性纳米Fe3O4为磁核,以钛酸四丁酯为原料,通过溶胶-凝胶法,在较低温度下合成了TiO2/Fe3O4磁性光催化剂。利用XRD、TEM、SEM-EDX等分析方法对合成催化剂的相组成、形貌、粒度、元素分布等进行了表征;研究了不同焙烧温度及TiO2/Fe3O4比例对降解罗丹明B光催化活性及磁分离回收性能的影响。结果表明,在100、300和450 ℃焙烧温度下磁性光催化剂的催化活性依次降低,较低温度(100 ℃)制备的催化剂具备较高的催化活性;当TiO2质量分数处于67.3%~73.0%时,催化剂既具有较高的光催化降解活性也具有较好的磁分离回收性能;光催化剂TiO2/Fe3O4(100 ℃,TiO2质量分数70%)在循环使用5次后,在降解75 min时仍能达到对罗丹明B 99%的脱色率和90%的回收率。  相似文献   

17.
纳米结构过渡金属氧化物与石墨烯的复合材料,已被证明是高可逆比容量和优异循环稳定性的新型锂离子电池负极材料之一,其制备工艺尤为重要。以九水硝酸铁、氧化石墨为原料,采用PVP辅助水热法制备Fe_2O_3/石墨烯纳米复合材料,探讨水热反应温度、反应时间条件对Fe_2O_3结构的影响,利用XRD和TEM对样品结构及形貌进行表征。结果表明:水热反应的最佳条件是温度为160℃、时间为12 h,制备得到Fe_2O_3粒径大小约为34砌,结晶度高,且均匀地分散在石墨烯表面。  相似文献   

18.
采用化学共沉淀法和水热法制备Fe3O4纳米磁性粒子及油酸包覆Fe3O4磁流体。通过实验确定最佳反应条件;用XRD分析Fe3O4粒子的晶体结构;用TEM观察磁流体样品的微观结构;用HPLC研究纳米粒子对左旋氧氟沙星溶液模拟废水超声降解的影响。结果表明产物为反尖晶石结构立方晶系的AB2O4型化合物,平均粒径小于15 nm;磁流体基本上为规则的球形,颗粒均匀,无团聚情况;制得的磁流体样品具有较好的流动性和超顺磁性;Fe3O4纳米粒子对左旋氧氟沙星具有一定的降解性能。  相似文献   

19.
利用化学共沉淀法制备纳米Fe3O4 微粒 ,并制成磁性液体 .研究磁性液体薄膜在不同磁场下的形貌变化 .用磁热重分析技术 (MTGA)研究纳米Fe3O4 微粒样品加热过程的相变 .初步测量在高频电磁场下纳米Fe3O4 微粒混合物的发热效应 .  相似文献   

20.
Fe3O4@SiO2 core–shell composite nanoparticles were successfully prepared by a one-pot process. Tetraethyl-orthosilicate was used as a surfactant to synthesize Fe3O4@SiO2 core–shell structures from prepared Fe3O4 nanoparticles. The properties of the Fe3O4 and Fe3O4@SiO2 composite nanoparticles were studied by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. The prepared Fe3O4 particles were approximately 12 nm in size, and the thickness of the SiO2 coating was approximately 4 nm. The magnetic properties were studied by vibrating sample magnetometry. The results show that the maximum saturation magnetization of the Fe3O4@SiO2 powder (34.85 A·m2·kg–1) was markedly lower than that of the Fe3O4 powder (79.55 A·m2·kg–1), which demonstrates that Fe3O4 was successfully wrapped by SiO2. The Fe3O4@SiO2 composite nanoparticles have broad prospects in biomedical applications; thus, our next study will apply them in magnetic resonance imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号