首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
王云普  温慧慧  杨超  刘汉功 《甘肃科技》2007,23(5):68-69,19
文章主要介绍了以丙烯酸、丙烯酸辛酯、甲基丙烯酸甲酯和丙烯酸丁酯为单体,以反应型乳化剂,采用乳液聚合,制得一种水性涂料用缔合型增稠剂。考察了丙烯酸、丙烯酸辛酯单体含量、乳化剂用量对乳液增稠性能的影响及对乳胶漆粘度的影响。  相似文献   

2.
低热封包装材料用丙烯酸酯乳液的合成研究   总被引:1,自引:0,他引:1  
针对双向拉伸聚丙烯薄膜(BOPP)包装材料,制备低热封丙烯酸乳液涂层材料.通过考察聚合工艺,调节单体比例、乳化剂、引发剂及其用量,测定乳液性能.研究结果表明:以十二烷基硫酸钠(K12)作为乳化剂,其适中的质量分数为0.5%,以质量分数为0.5%的过硫酸铵作为引发剂,软硬单体按质量比为1∶1混合,进一步加入质量分数为2%的功能性单体丙烯酸(AA),所制备的乳液稳定性较好,成膜性优异,热封强度达到2.64 N/cm,大大超过现有市场产品的性能.  相似文献   

3.
以丙烯酸丁酯、丙烯腈和苯乙烯等为单体,加入荧光染料,采用半连续种子乳液聚合工艺制备出了高性能的丙烯酸荧光乳液。研究了乳化剂对荧光乳液性能的影响,显示复合乳化剂的添加比例及最佳乳化剂使用量相对于乳液质量的占比。  相似文献   

4.
含氟丙烯酸酯乳液的制备   总被引:1,自引:0,他引:1  
以有机氟单体、甲基丙烯酸甲酯、丙烯酸丁酯、丙烯酸等为共聚单体,制备含氟丙烯酸酯乳液.探讨乳化剂种类、乳化剂量、反应温度、引发剂量、恒温时间和氟单体含量等各种工艺条件对乳液聚合性能的影响,并对制备的乳液进行傅立叶转换红外光谱、接触角等表征,结果表明在使用R-A/R-D复配乳化剂,乳化剂用量为0.24 wt%,反应温度为85℃,引发剂用量为0.3 wt%,恒温时间为2.5 h,氟单体含量为20 wt%时制备的乳液具有很高的转化率和较低的凝聚物含量,乳液转化率达到99%,凝聚物含量为0.19 wt%.制备的乳液涂膜后,乳胶膜具有很好的疏水性.  相似文献   

5.
乳液聚合中乳化剂对聚合物稳定性的考察   总被引:2,自引:0,他引:2  
在乳液聚合中 ,乳化剂虽然不直接参加化学反应 ,但它使单体在水中的分散变得容易 ,并能减低单体相和水相之间的表面张力 ,影响聚合物分子量及分子量的分布 ,影响乳胶的粘度和尺寸 ,从而关联到乳液系统的稳定可靠性 ,是乳液聚合的重要组分之一 .本实验在乙酸乙烯酯 -丙烯酸 -顺丁烯二酸二丁酯的三元共聚中 ,改变阴离子乳化剂和非离子乳化剂的比例 ,对聚合物乳液的冻融稳定性、高温稳定性和稀释稳定性进行考察 ,以寻求 2种乳化剂用量的最佳比例范围 .1 实验部分1 .1 主要原料配方 乙酸乙烯酯 (VAC ,工业纯 )1 0 0g ;丙烯酸 (AA ,化学…  相似文献   

6.
以Cu2+为模板离子,丙烯酸、丙烯酰胺及甲基丙烯酸为功能单体,过硫酸钾为引发剂,二乙烯基苯(DVB)为交联剂,苯乙烯(St)为骨架单体,十二烷基硫酸钠为乳化剂,采用乳液聚合法制备了铜离子印迹聚合物.采用紫外吸收光谱考察了Cu2+与功能单体之间的相互作用,在确定引发剂用量的基础上,考察了功能单体种类、介质pH值、Cu2+/功能单体摩尔比以及DVB/St质量比等因素对印迹聚合物吸附性能的影响趋势,得到了较优的合成条件,并提出了乳液法Cu2+印迹聚合物的合成及识别过程.  相似文献   

7.
研究了以两亲聚合物P(C9-AA)作乳化剂,制备大颗粒及具有一定稳定性的苯丙乳液的方法;讨论了乳化剂,温度及引发剂用量对乳液性能的影响。结果表明,以P(C9-AA)作乳化剂时,乳化剂用量为单体质量的1.0%,引发剂用量为单体质量的1.2%,99℃下可以合成性能良好的苯丙乳液。  相似文献   

8.
增粘树脂与丙烯酸酯共存下的乳液聚合行为   总被引:1,自引:0,他引:1  
将多种增粘树脂溶解在丙烯酸单体中,预乳化后参与乳液聚合。并研究了其乳液聚合反应行为,讨论了乳化剂、引发剂、保护胶体、增粘树脂选择以及其最佳用量,确定了最佳反应条件,得到与塑料粘结力高且贮存稳定性高、单体转化率达到99%以上的丙烯酸酯共聚物乳液。并用IR和DSC分析表征了溶有增粘树脂的丙烯酸乳液聚合物,可以证明的是单体都参与了聚合反应,加入的增粘树脂种类不同会影响聚合物的Tg值。通过试验发现当两种增粘树脂配比达到最佳值时,可以得到性能最好的胶粘剂。  相似文献   

9.
本文以丙烯酸类单体为主要原料,通过半连续聚合工艺,合成了聚丙烯薄膜用高耐水白丙烯酸酯乳液压敏胶,考察了聚合型乳化剂、引发剂、种子乳液及内外交联单体用量乳液及压敏胶性能的影响。综合乳液性能及压敏胶性能得出:当反应型乳化剂SR-10/X-209=1:1用量为2.5%、引发剂用量为0.6%、种子乳液用量为3%,内交联单体为乙酰乙酸基甲基丙烯酸乙酯(AAEM)用量(占总单体总量)为0.5%、外交联单体为Silok627用量(下同)不超0.5%时所制备的压敏胶在聚丙烯薄膜上的粘结性能适中且具有优异的耐水白性。  相似文献   

10.
丙烯酸核壳乳液的制备与性能研究   总被引:6,自引:0,他引:6  
采用甲基丙烯酸甲酯,丙烯酸丁酯和丙烯酸为核壳阶段的单体,通过半连续滴加的种子乳液聚合的合成工艺,得到了一种粘度适中,稳定性良好,具有核壳结构的乳液.讨论了聚合工艺,乳化剂及引发剂用量种类,核壳两阶段单体用量比例对乳液聚合工艺和乳液性能的影响.  相似文献   

11.
苯丙乳液水泥复合漆是将苯丙乳液与普通硅酸盐白水泥相混合,并用膨润土和石英砂改性,形成有机高分子和无机硅酸盐相结合的材料,其耐磨性、耐擦洗性和贮存性均满足地面涂料使用要求,且价格便宜,施工方便,无环境污染。  相似文献   

12.
含功能性单体的苯/丙乳液的聚合稳定性   总被引:8,自引:3,他引:8  
采用乳液聚合工艺,以过硫酸钾为引发剂,合成了含功能性单体甲基丙烯酸羟乙酯和丙烯酸的苯乙烯/丙烯酸丁酯共聚乳液,系统研究了乳化体系、引发体系、含功能基单体含量、聚合工艺和聚合温度等对乳液聚合过程稳定性的影响,发现聚合温度降低,采用半连续聚合工艺以及适当提高乳化剂的浓度均有利于乳液聚合反应的稳定性提高。  相似文献   

13.
微交联氟碳丙烯酸酯乳液的制备   总被引:1,自引:0,他引:1  
以有机氟碳单体、丙烯酸酯等为共聚单体,引入交联剂制备微交联氟碳丙烯酸酯乳液。探讨交联剂、乳化剂、引发剂、氟单体等对乳液的影响。红外光谱分析结果表明氟碳单体已键接到聚合物主链上。在单体中加入交联剂二乙烯基苯(DVB),使用R-A/R-D复配乳化剂,n(R-A)︰n(R-D)=0.5,w(引发剂)=0.4%,w(氟单体)=20%时制备的乳液性能较好,转化率达到98.31%,凝聚物量0.42%,乳胶膜接触角达到77°,吸水率仅为8.89%。  相似文献   

14.
以丙烯酸丁酯(BA)、甲基丙烯酸甲酯(MMA)为主要单体,采用传统的乳液聚合方法合成了稳定的聚丙烯酸酯水溶性抑尘剂乳液,考察了单体配比、引发剂和乳化剂用量对乳液性能的影响。此外,还采用黏度、IR、TG、SEM等方法对乳液进行了表征,研究了其作为固沙抑尘剂时的固沙抑尘效果。结果表明MMA质量含量25%、引发剂占单体质量0.8%、乳化剂质量含量3%时,所得产品作为固沙抑尘剂使用效果好,热稳定性和黏度等满足室外抑尘的需要。  相似文献   

15.
反应性丙烯酸酯/硅氧烷共聚物乳液流变性能   总被引:3,自引:0,他引:3  
采用预乳化部分连续法,以丙烯酸丁酯(BA)、甲基丙烯酸甲酯(MMA)、八甲基环四硅氧烷(D4)和少量甲基丙烯酰氧丙基三甲氧基硅烷(MATS)为原料,以过硫酸铵(APS)和十二烷基苯磺酸(DBSA)为复合引发催化剂,制得丙烯酸酯/硅氧烷共聚乳液.该乳液具有自身不交联、破乳后或涂膜后室温交联的优异性能.考察了乳液固含量、聚合物中硅含量、乳化剂种类、聚合温度、乳液放置时间、D4与MATS质量比、引发剂DBSA用量对共聚乳液流变性能的影响.结果表明,当硅含量>45%或固含量>40%时,可以得到假塑性流体.  相似文献   

16.
利用细乳液聚合法制备大豆蛋白丙烯酸酯胶黏剂,并压制胶合板、检测胶合强度.通过正交试验确定最佳制胶工艺条件:m(大豆蛋白)∶m(丙烯酸酯)∶m(乳化剂)为1∶6∶0.04,温度80℃.制备的胶黏剂胶合性能最好,压制的胶合板达到GB/T 9846—2004Ⅱ类胶合板要求.  相似文献   

17.
以羧甲基纤维素为保护胶体代替传统的乳化剂烷基酚聚氧乙烯醚(OP)、十二烷基硫酸钠等,通过乳液聚合,得到了一种性能优良的丙烯酸酯复合乳液。通过几种不同乳液的比较表明,羧甲基纤维素丙烯酸酯复合乳液有很好的耐离子强度和耐有机溶剂性,得到的聚合物力学性能有一定提高,并可得到固体质量分数50%的稳定乳液。乳液的交联度测试结果表明羧甲基纤维素与丙烯酸酯结合在一起,参与了聚合反应;羧甲基纤维素的加入可以提高单体的转化率,但高黏度和低黏度的羧甲基纤维素都不利于聚合反应。  相似文献   

18.
以苯乙烯(St)、丙烯酸丁酯(BA)、丙烯酸(AA)为单体,N-羟甲基丙烯酰胺(NMA)和丙烯酸二羟乙酯(HEA)为交联剂合成了苯丙乳液.红外光谱表明所有单体均参与共聚反应,透射电镜表明乳液粒径均匀,粒度分布窄.以苯丙乳液对滤清器滤纸进行了浸渍处理,经过浸渍以后明显提高了滤纸的耐水性、耐破度、挺度等性能.以透射电镜对浸渍后滤纸进行表征,结果表明苯丙乳液包覆在滤纸纤维表面、纤维交织点,改变了滤纸的微观孔洞结构,提高了滤纸的过滤效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号