首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 406 毫秒
1.
系统研究了室温下Tb0.3Dy0.7(Fe1-xAlx)1.95(x=0,0.05,0.1,0.15,0.2,0.25,0.3,0.35)合金中金属Al替代Fe对磁性、磁致伸缩、自旋重取向和穆斯堡尔谱的影响.结果发现,x<0.4时,Tb0.3Dy0.7(Fe1-xAlx)1.95完全保持MgCu2立方Laves相结构.磁化强度和磁致伸缩测量发现,x<0.15时,添加少量Al有助于减小磁晶各向异性,并且随着Al替代量x增加,磁致伸缩λs、内禀磁致伸缩λ111和Curie温度Tc大幅度降低.多功能磁性测量系统PPMS的研究和M(o)ssbauer效应表明,Tb0.3Dy0.7(Fe1-xAlx)1.95合金的易磁化方向随成分和温度在{110}面逐渐偏离了立方晶体的主对称轴,即自旋重取向.室温下,当x=0.15时,Tb0.3Dy0.7(Fe1-xAlx)1.95合金中出现了少量非磁性相;x>0.15时,该合金完全呈顺磁性;而77K温度下x=0.2时合金仍然呈磁性相.  相似文献   

2.
系统研究了室温下Tb0.3Dy0.7(Fe1-xAlx)1.95(x=0,0.05,0.1,0.15,0.2,0.25,0.3,0.35)合金中金属Al替代Fe对磁性、磁致伸缩、自旋重取向和穆斯堡尔谱的影响.结果发现,x<0.4时,Tb0.3Dy0.7(Fe1-xAlx)1.95完全保持MgCu2立方Laves相结构.磁化强度和磁致伸缩测量发现,x<0.15时,添加少量Al有助于减小磁晶各向异性,并且随着Al替代量x增加,磁致伸缩λs、内禀磁致伸缩λ111和Curie温度Tc大幅度降低.多功能磁性测量系统PPMS的研究和M(o)ssbauer效应表明,Tb0.3Dy0.7(Fe1-xAlx)1.95合金的易磁化方向随成分和温度在{110}面逐渐偏离了立方晶体的主对称轴,即自旋重取向.室温下,当x=0.15时,Tb0.3Dy0.7(Fe1-xAlx)1.95合金中出现了少量非磁性相;x>0.15时,该合金完全呈顺磁性;而77K温度下x=0.2时合金仍然呈磁性相.  相似文献   

3.
系统研究了室温下Tb0.3Dy0.7(Fe1-xAlx)1.95(x=0,0.05,0.1,0.15,0.2,0.25,0.3,0.35)合金中金属Al替代Fe对晶体结构、磁致伸缩、内禀磁致伸缩、各向异性和自旋重取向的影响.结果发现,x<0.4时,Tb0 3Dy0 7(Fe1-xAlx)1.95完全保持MgCu2立方Laves相结构,晶格常数α随Al含量x的增加而增大.磁致伸缩测量发现,随着替代量x的增加磁致伸缩减小,x>0.15时超磁致伸缩效应消失;x<0.15时磁致伸缩在低场下(H≤40 kA/m)有小幅增加,高场下迅速减小,而且易趋于饱和,说明添加少量Al有助于减小磁晶各向异性.内禀磁致伸缩λ111随Al替代量x的增加大幅度降低.M(o)ssbauer效应表明,Tb0.3Dy0.7(Fe1-xAlx)1.95合金的易磁化方向随成分和温度在{110}面逐渐偏离了立方晶体的主对称轴,即自旋重取向.室温下,当x=0.15时,Tb0.3Dy0.7(Fe1-xAlx)1.95合金中出现了少量非磁性相;x>0.15时,合金完全呈顺磁性;而77K温度下x=0.2时合金仍然呈磁性相.在室温和77K温度时,超精细场Hhf均随Al元素的增加而减小,而同质异能移IS随Al元素的增加而增加.  相似文献   

4.
系统研究了室温下Tb0.3Dy0.7(Fe1-xAlx)1.95(x=0,0.05,0.1,0.15,0.2,0.25,0.3,0.35)合金中金属Al替代Fe对晶体结构、磁致伸缩、内禀磁致伸缩、各向异性和自旋重取向的影响.结果发现,x<0.4时,Tb0 3Dy0 7(Fe1-xAlx)1.95完全保持MgCu2立方Laves相结构,晶格常数α随Al含量x的增加而增大.磁致伸缩测量发现,随着替代量x的增加磁致伸缩减小,x>0.15时超磁致伸缩效应消失;x<0.15时磁致伸缩在低场下(H≤40 kA/m)有小幅增加,高场下迅速减小,而且易趋于饱和,说明添加少量Al有助于减小磁晶各向异性.内禀磁致伸缩λ111随Al替代量x的增加大幅度降低.M(o)ssbauer效应表明,Tb0.3Dy0.7(Fe1-xAlx)1.95合金的易磁化方向随成分和温度在{110}面逐渐偏离了立方晶体的主对称轴,即自旋重取向.室温下,当x=0.15时,Tb0.3Dy0.7(Fe1-xAlx)1.95合金中出现了少量非磁性相;x>0.15时,合金完全呈顺磁性;而77K温度下x=0.2时合金仍然呈磁性相.在室温和77K温度时,超精细场Hhf均随Al元素的增加而减小,而同质异能移IS随Al元素的增加而增加.  相似文献   

5.
系统研究了室温下Tb0.3Dy0.7(Fe1?xAlx)1.95(x=0,0.05,0.1,0.15,0.2,0.25,0.3,0.35)合金中金属Al替代Fe对晶体结构、磁致伸缩、内禀磁致伸缩、各向异性和自旋重取向的影响.结果发现,x<0.4时,Tb0.3Dy0.7(Fe_(1-x)Al_x)1.95完全保持MgCu2立方Laves相结构,晶格常数a随Al含量x的增加而增大.磁致伸缩测量发现,随着替代量x的增加磁致伸缩减小,x>0.15时超磁致伸缩效应消失;x<0.15时磁致伸缩在低场下(H≤40kA/m)有小幅增加,高场下迅速减小,而且易趋于饱和,说明添加少量Al有助于减小磁晶各向异性.内禀磁致伸缩λ111随Al替代量x的增加大幅度降低.M?ssbauer效应表明,Tb0.3Dy0.7(Fe1?xAlx)1.95合金的易磁化方向随成分和温度在{110}面逐渐偏离了立方晶体的主对称轴,即自旋重取向.室温下,当x=0.15时,Tb0.3Dy0.7(Fe1?xAlx)1.95合金中出现了少量非磁性相;x>0.15时,合金完全呈顺磁性;而77K温度下x=0.2时合金仍然呈磁性相.在室温和77K温度时,超精细场Hhf均随Al元素的增加而减小,而同质异能移IS随Al元素的增加而增加.  相似文献   

6.
采用熔体直接快淬(DRQ)工艺制备了成分为NdxFe94-xB6(x=7,8,9,10at%)和Nd8Dy1Fe85-xNbxB6(x=0,0.5,1,1.5at%)两组合金的最佳快淬薄带.用X射线衍射(XRD)和振动样品磁强计(VSM)测量了薄带的相结构和磁性能.结果表明:NdxFe94-xB6(x=7,8,9,10)合金在x=8时综合磁性能最佳;同时添加少量的Dy和Nb元素,可有效的提高纳米双相复合永磁合金的磁性能.  相似文献   

7.
研究了Fe含量对Ni56Mn25 xFexGa19(x=0~10)合金的微观组织结构、相变行为、力学性能和记忆特性的影响规律.当x 4时,Ni56Mn25–xFexGa19合金仍然保持着单一的四方结构马氏体相;当x 6时,合金呈现为马氏体相和面心立方γ相组成的双相结构.相对于马氏体相,γ相为富Ni和富Fe相,其含量随Fe含量的增加而增加.随着Fe含量增加,合金的马氏体相变温度逐渐降低,其峰值温度从x=0时的356℃降低至x=10时的170℃,这主要归因于马氏体相尺寸因素和电子浓度的综合作用.通过添加Fe替代Mn在合金中引入的γ相可提高合金的强度和塑性,但最大形状记忆回复应变从x=0时的5.0%降低到x=6时的2.0%.  相似文献   

8.
利用溶胶—凝胶法制备了(FePt)100-x Au x(x=0%,5%,10%,20%)纳米颗粒,并且研究了不同含量的Au对FePt纳米颗粒磁性和结构的影响.实验发现,添加Au可以有效降低FePt合金从无序相到有序相的相转变温度,增加L10相FePt颗粒的有序化程度,并且会增加FePt颗粒的晶粒尺寸.磁性测试结果表明,在600℃时,掺杂Au后(FePt)90Au10样品的矫顽力可以达到9 585 Oe,比不添加时的5 250 Oe提高了很多,这可能是由于掺杂Au使FePt的有序化程度增加,并且使颗粒的尺寸增大.  相似文献   

9.
系统研究了室温下Tb0.3Dy0.7(Fe1-xAlx)1.95(x=0,0.05,0.1,0.15,0.2,0.25,0.3,0.35)合金中金属Al替代Fe对磁性、磁致伸缩、自旋重取向和穆斯堡尔谱的影响.结果发现,x<0.4时,Tb0.3Dy0.7 (Fe1-xAlx)1.95完全保持MgCu2立方Laves相结构.磁化强度和磁致伸缩测量发现,x<0.15时,添加少量Al有助于减小磁晶各向异性,并且随着Al替代量x增加,磁致伸缩λs、内禀磁致伸缩λ111和Curie温度Tc大幅度降低.多功能磁性测量系统PPMS的研究和Mossbauer效应表明,Tb0.3Dy0.7(Fe1-xAlx)1.95合金的易磁化方向随成分和温度在{110}面逐渐偏离了立方晶体的主对称轴,即自旋重取向.室温下,当x=0.15时,Tb0.3Dy0.7(Fe1-xAlx)1.95合金中出现了少量非磁性相;x>0.15时,该合金完全呈顺磁性;而77K温度下x=0.2时合金仍然呈磁性相.  相似文献   

10.
采用快淬及热处理工艺 ,通过复合添加Dy和Ga ,制备了高磁性能的NdFeB纳米复合永磁合金。最佳条件下 ,添加Dy和Ga的合金磁性能为Jr =1.16T、Hci =5 80 .92kA/m和 (BH) max=16 2 .74kJ/m3;而不含Dy和Ga的NdFeB合金为Jr =1.18T、Hci =379.5kA/m和 (BH) max =119.5kJ/m3。X射线衍射和透射电子显微分析表明两种合金均由 2 :14 :1硬磁相和α -Fe软磁相组成。 2 :14 :1相晶粒尺寸在两合金中相当 ,但添加Dy和Ga的合金的α -Fe相晶粒尺寸和含量分别小于和低于不含Dy和Ga的NdFeB合金  相似文献   

11.
通过X射线衍射仪、 差热扫描量热仪和振动样品磁强计研究Dy对Nd-Fe-Al非晶合金的热稳定性及磁性能的影响. 结果表明, 加入Dy可提高非晶合金的热稳定性, (Nd1-xDyx)60Fe30Al10(x=0,0.1,0.2)非晶合金的剩磁随Dy质量分数的增加呈单调下降趋势, 矫顽力随Dy质量分数的增加而增加. Nd\|Fe\|Al非晶合金的矫顽力来源于稀土元素较大的磁晶各向异性场.   相似文献   

12.
通过X射线衍射仪、差热扫描量热仪和振动样品磁强计研究Dy对Nd-Fe-Al非晶合金的热稳定性及磁性能的影响.结果表明,加入Dy可提高非晶合金的热稳定性,(Nd1-xDyx)60Fe30Al10(x=0,0.1,0.2)非晶合金的剩磁随Dy质量分数的增加呈单调下降趋势,矫顽力随Dy质量分数的增加而增加.Nd-Fe-Al非晶合金的矫顽力来源于稀土元素较大的磁晶各向异性场.  相似文献   

13.
分别采用电弧熔炼和机械合金化法制备Nd60 Fe30-xZrxAl10(x=5,10,15,20)晶态和纳米非晶态合金,并利用X射线衍射仪、振动样品磁强计等对制备的晶态合金和纳米非晶态合金的结构及其磁性能进行分析,研究Fe和Zr相对含量的变化对合金相的组成及磁性能的影响.结果表明:Nd60 Fe30-xZrxAl10(x=5,10,15,20)合金晶态及纳米非晶态合金均显示软磁性;对于晶态样品,随着Zr含量的增加,样品的磁化强度逐步降低;对于纳米非晶态合金,随着Zr含量的增加,合金的饱和磁化强度降低;相同成分的纳米非晶态合金的饱和磁化强度高于相应的晶态合金的饱和磁化强度.Nd60Fe20Zr10Al10混合粉末球磨100 h后达到了完全非晶化,说明Nd60 Fe20Zr10Al10有较好的非晶形成能力.  相似文献   

14.
在(Nd,Fe)(76.5)Co_(15)Al_1B_(7.5)的基础上,研究丁Nd,Fe量变化对合金性能的影响,其形式为Nd_(18-x)Fe_(58.5+x)Co_(15)Al_1B_(7.5),x=1,2,3,4,结果合金最佳性能出现在Nd量为15—16at%之间。同时研究了用W,Mo,Zr,Nb替代Al的工作,其替代式为Nd_(16)Fe_(76.5)Co_(15)B_(7.5),M_1,M为W,Mo,Zr,Nb。W替代Al的合金有较好的磁性能和热稳定性能。  相似文献   

15.
非晶态磁热合金材料可以在很宽的温度范围内实现较大的磁制冷容量,其中铁基非晶态磁热合金因其具有近室温的磁熵变区间和低廉的成本受到广泛关注.本文通过感应熔炼铜辊甩带的方法成功制备出了一系列Fe89?xZr7B4Dyx(x=1,2,3,4)非晶态合金,并对其非晶形成能力和磁热性能进行了系统测试和分析.随着Dy含量的增加,该合金的玻璃形成能力得到改善,居里温度从296 K增加到334 K.磁熵变峰值和制冷能力也随着Dy含量的增加单调增长,在3 T的外加磁场下,Fe85Zr7B4Dy4合金的最大磁熵变达到了2.45 J K?1 kg?1,制冷能力为235 J kg?1,相对于三元Fe-Zr-B体系,同一磁场下的磁熵变峰值提高60%以上.该非晶态合金原材料成本低廉,其磁热性能随着成分变化可以调控,居里温度远低于玻璃转变温度,能够保证材料在使用过程中的结构稳定性,有成为近室温的磁制冷工质的潜力.  相似文献   

16.
采用单辊快淬法制备Fe81Zr9-xNbxB10(x=2,4,6)系非晶合金,并对该系非晶合金进行不同温度热处理.利用X射线衍射(XRD)和振动样品磁强计(VSM)测试合金的结构和磁性能.实验表明,α-Fe铁磁相析出的起始晶化温度随Nb含量的增加而升高.快淬态合金的比饱和磁化强度(Ms)随Nb含量的增加而减小.三种合金的Ms均随退火温度的升高而增大,这与铁磁和反铁磁的交换耦合作用有关.  相似文献   

17.
在氩气保护下采用电磁感应熔炼制备La0.7Zr0.1Mg0.2Ni3.4-xCoxFe0.1(x=0.15,0.25,0.35,0.45)合金,研究合金的相结构,以及Co元素部分取代Ni元素对合金的气态储氢性能和电化学性能的影响。结果表明,合金主要由LaNi5、LaNi2以及La2MgNi9相组成。合金电极的最大放电容量分别为346.7mAh/g(x=0.15)、320.3mAh/g(x=0.25)、363.0mAh/g(x=0.35)和313.3mAh/g(x=0.45),经过65个充放电循环后,合金电极的容量保持率从63.0%(x=0.15)增加到80.2%(x=0.35),然后再下降到75.0%(x=0.45)。La0.7Zr0.1Mg0.2Ni3.15Co0.25Fe0.1合金具有较高的高倍率放电性能(HRD1200%=67.3)和较大的极限电流密度(IL=386.8 mA/g),显示出其良好的电化学动力学性能。  相似文献   

18.
To improve the electrochemical properties of rare-earth-Mg-Ni-based hydrogen storage alloys, the effects of stoichiometry and Cu-substitution on the phase structure and thermodynamic properties of the alloys were studied. Nonsubstituted Ml0.80Mg0.20(Ni2.90Co0.50-Mn0.30Al0.30)x (x=0.68, 0.70, 0.72, 0.74, 0.76) alloys and Cu-substituted Ml0.80Mg0.20(Ni2.90Co0.50-y Cuy Mn0.30Al0.30)0.70 (y=0, 0.10, 0.30, 0.50) alloys were prepared by induction melting. Phase structure analysis shows that the nonsubstituted alloys consist of a LaNi5 phase, a LaNi3 phase, and a minor La2Ni7 phase; in addition, in the case of Cu-substitution, the Nd2Ni7 phase appears and the LaNi3 phase vanishes. Thermodynamic tests show that the enthalpy change in the dehydriding process decreases, indicating that hydride stability decreases with increasing stoichiometry and increasing Cu content. The maximum discharge capacity, kinetic properties, and cycling stability of the alloy electrodes all increase and then decrease with increasing stoichiometry or increasing Cu content. Furthermore, Cu substitution for Co ameliorates the discharge capacity, kinetics, and cycling stability of the alloy electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号