首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
裂缝性油藏介质由基质和有效裂缝组成.利用岩心分析、测井、地震、薄片分析等静态描述手段测试并计算了基质的孔隙度和渗透率,得到裂缝的宽度、密度和方位等参数.以油藏流体流动模型为基础,利用生产、试井、试采或试油数据求出油藏总渗透率,再结合裂缝参数确定裂缝系统的各向异性渗透率.采用随机裂缝模型,由裂缝渗透率和裂缝宽度计算得到裂缝孔隙度.该方法给出了裂缝和基质系统的渗透率与孔隙度间的定量关系,确定的参数分布合理而完善;考虑了油田各种基础资料数据采集的成本和可行性,具有经济、高效、实用的特点.该方法的应用较好地解决了辽河油田小22块火山岩裂缝性油藏预测模型难以建立的问题.  相似文献   

2.
低孔隙度岩石中的裂缝对储层渗透率具有重要影响,但裂缝的存在导致岩心代表性样品选取和高精度岩石物理参数测量困难。为研究裂缝对低孔隙度岩石渗透率的影响,本文通过高精度CT扫描实验构建了低孔隙度岩石的三维数字岩心模型,采用添加平板裂缝的方法构建了不同裂缝参数的低孔隙度岩石数字岩心,并利用格子玻尔兹曼(LBM)方法计算了不同裂缝参数数字岩心模型的渗流场分布和绝对渗透率。结果表明,尽管低孔隙度岩石的数字岩心模型基质渗透率低,但裂缝的存在对岩石渗透率有一定程度的提高。然而,裂缝发育程度对渗透率影响规律不同:当单条裂缝孔隙度在0-0.4 %时,裂缝对模型渗透率影响不明显;当单条裂缝孔隙度大于0.4 %时,裂缝对模型渗透率具有显著影响;模型渗透率随裂缝开度增大而增大,随裂缝倾角增大而减小,随裂缝数量增加而增大。另外,裂缝与基质存在耦合作用,与裂缝相连的孔隙中流体流速明显提高,显示裂缝对基质孔隙的强连通作用。本研究结果对含裂缝的低孔隙度储层渗透率精确计算及储层压裂后的油气产能评价有指导意义。  相似文献   

3.
等效裂缝渗流模型在天然裂缝储层产能预测中的应用   总被引:1,自引:0,他引:1  
 为了研究天然裂缝发育的低渗透油藏产能特征,根据连续介质理论,简化了裂缝系统,建立了天然裂缝的等效渗流模型,得到了等效渗流模型稳态渗流的产能方程。应用产能方程进行实例计算,所得单井产能结果与实际油田单井产能相符合,验证了该产能方程的正确性及适用性。分析了裂缝宽度、裂缝长度和裂缝渗透率对产能的影响,结果表明,裂缝长度对产能的影响更大;当裂缝渗透率和裂缝宽度达到一定值之后,要提高产量应主要增加裂缝的长度。  相似文献   

4.
在天然裂缝油藏中,裂缝的主方向决定了主渗透率的方向,确定裂缝方位对于天然裂缝油藏开发和注水方案的设计具有重要的意义。基于Waren和Root提出的双孔隙度模型建立了各向异性天然裂缝油藏的数学模型,通过坐标变换和Laplace变换,求出了该模型在Laplace空间的分析解,用Stefest数值反演方法求出该模型在实空间的解。同时给出了用最小二乘法对多井干扰试井的压力数据拟合确定裂缝方位的方法。  相似文献   

5.
各向异性天然裂缝油藏裂缝方位的确定   总被引:4,自引:2,他引:2  
在天然裂缝油藏中,裂缝的主方向决定了主渗透率的方向,确定裂缝方位对于天然裂缝油藏开发和注水方案的设计具有重要的意义。基于Warren和Root提出的双孔隙度模型建立了各向异性天然裂缝油藏的数学模型,通过坐标变换和Laplace变换求出了该模型在Laplace空间的分析解,用Stefest数值反演方法求出该模型在实空间的解。同时给出了用最小二乘法对多井干扰试井的压力数据拟合确定裂缝方位的方法。  相似文献   

6.
针对裂缝性储层地质建模的难点和重点,在对渤海海域特殊变质岩潜山裂缝性油藏地质、物探、测井综合研究的基础上,针对国内外裂缝性储层地质建模的技术方法,提出了双重介质油藏储层的4步建模方法:①建立基质和裂缝共用的三维构造模型;②建立基质系统的属性参数模型;③建立裂缝网络几何模型,并将裂缝几何模型等效成裂缝参数定量模型;④动态校验模型。首次利用叠前地震反演资料做约束对裂缝发育的密度进行定量预测,并在此基础上根据成像测井解释的裂缝参数的统计规律对裂缝的三维分布进行预测,建立三维可视化的裂缝网络模型,将离散的裂缝网络转化为定量化的三维参数模型。以锦州25-1S油田裂缝性潜山基岩油藏为例,对裂缝性油藏(尤其是潜山油藏)的储层地质建模技术进行探讨和尝试。在对太古界潜山油藏构造、岩性、裂缝等精细描述的基础上,利用Fred和Petrel等先进地质建模软件建立了油藏的三维构造模型、裂缝空间展布及储层属性模型,对该裂缝性油藏进行了三维储层定量化表征,为该油藏开发方案的优化及实施奠定了基础。  相似文献   

7.
克拉玛依油田二区克92井区火山岩储层地质模型   总被引:5,自引:2,他引:3  
以克拉玛依油田二区克92井区块石炭系裂缝性火山岩油藏为例,探讨对于火山岩储层建模的新途径.针对裂缝性火山岩油藏存在孔隙度、渗透率完全不同的2类储集空间,分别应用PeterlTM软件和Fraca软件建立基质模型与裂缝模型.  相似文献   

8.
低渗裂缝性储层渗透性能变化的动态模拟   总被引:3,自引:0,他引:3  
油井暴性水淹是裂缝性砂岩油田开发的普遍特征,这主要是开发过程中注水引起裂缝开启、扩展所致。根据有效压力变化对孔隙度、渗透率变化规律的实验研究结果,给出了储层渗流场和岩土变形场耦合关系式,考虑裂缝渗流的各向异性特征,给出裂缝性低渗透储层孔隙度、渗透率的简单计算方法,利用油藏流固耦合理论,对一五点井网先采用衰竭式开采,后注水的开发过程中,孔隙度、渗透率的变化情况进行了数值模拟。对于合理确定注水压力及井网的合理布置,防治水窜及暴性水淹等具有重要的指导意义。  相似文献   

9.
本文应用裂缝岩心资料以及将相对渗透率普遍方程引入裂缝—基质双重孔隙系统的方法,对华北裂缝油藏岩石的相对渗透率进行了计算。计算结果比华北油田提供的试验结果更能表达该油田裂缝岩石的特征。  相似文献   

10.
 针对黑油模型等效处理裂缝方法不能很好体现裂缝在油藏中的特性,利用裂缝-基质耦合渗流理论方法,建立油水两相三维裂缝性油藏数值模型。基于该数值模型研究油藏地质和开发条件对弱凝胶调驱效果的影响,对影响因素进行了显著性评价,通过对调驱影响显著的因素进行定量研究,提出了裂缝性油藏适宜调驱的油藏条件。利用正交分析方法,对实际油藏进行调驱参数优化设计。  相似文献   

11.
四川盆地新场气田三叠系须家河组砂岩气藏是一个致密砂岩裂缝型气藏。储集层的基质孔隙度很低,平均只有3.8%,基质渗透率低于0.3mD,以裂缝贡献渗透率为主。通过采用新一代三维空间全局寻优离散扫描技术,精确扫描地震轴的产状,分析井上裂缝密度与精细扫描后各种地震几何属性关系,指出利用像素成像属性预测大尺度裂缝、利用曲率属性预测小尺度裂缝是有效的。在裂缝分析基础上找到研究区裂缝发育特点,利用岩性和曲率属性做约束,由井出发预测地震级别的大尺度裂缝和小尺度网状缝的密度。结合构造部位和生产井生产状况,指出在有利储集层圈定前提下,构造高部位的裂缝发育区是有利的勘探开发区。  相似文献   

12.
复杂致密储层裂缝特征研究   总被引:1,自引:0,他引:1  
塔里木盆地奥陶系碳酸盐岩储层是一类典型的复杂致密油藏,奥陶系地层经过多期构造运动和古岩溶共同作用形成的岩溶缝洞型碳酸盐岩油藏,其中的一间房组和鹰山组储层以灰岩和白云岩为主,属于超低孔超低渗复杂致密储层。根据岩芯资料分析,一间房组岩芯分析孔隙度低于2%的占90%,鹰山组岩芯孔隙度低于2%的占67.3%,平均基质孔隙度约1.69%。露头、岩芯以及镜下薄片观察发现,在此类储层中,基质基本不具有储渗意义,绝大部分油气是储存在成岩后期产生的溶洞和裂缝中。储集空间是以构造变形产生的构造裂缝与岩溶作用形成的孔、洞、缝为主,其中洞穴是本区储层最主要的储集空间。裂缝具有双重作用,既是重要的储集空间,又是洞穴和裂缝连通的关键通道。裂缝和溶洞也是这类储层储集空间形态多样、大小悬殊、分布不均、具有很强的非均质性的根本原因。本文重点对一间房和鹰山组裂缝性进行了研究,分析裂缝测井响应特征,裂缝发育和分布规律,采用序贯高斯随机建模方法建立裂缝孔隙度、张开度和渗透率的三维分布模型,模拟结果表明,裂缝对渗透率的改造作用特别大,说明裂缝在储层储渗方面起着重要作用。  相似文献   

13.
应力敏感油藏压裂井产量动态规律研究   总被引:1,自引:0,他引:1  
基于广义达西定律及流固耦合理论建立了渗透率各向异性疏松砂岩脱砂压裂人工裂缝-油藏系统流固耦合模型,模拟分析了压裂造缝及降压生产流固耦合作用对储层应力、孔渗特性及生产动态的影响.研究表明:脱砂压裂造缝对储层物性影响主要体现在近井眼10m以内,且造缝宽度越大影响越显著,远离井眼及人工裂缝后,储层物性变化明显放缓;开井初期,储层孔渗参数变化显著,随生产时间增加,储层孔渗参数趋于稳定,仅随空间位置而变化;在压裂造缝及降压生产流固耦合作用综合影响下,近裂缝储层弹性模量显著增加,储层孔渗参数显著降低,压裂井产量明显低于常规渗流模型预测结果.对应力敏感性较强储层进行生产动态分析时,必须充分考虑流固耦合作用影响.  相似文献   

14.
裂缝性气藏中孔隙介质包括压裂裂缝、天然裂缝及基质孔隙。考虑裂缝与基质间的物质交换,建立了考虑压裂裂缝的多重孔隙介质渗流数学模型,研制了裂缝性气藏压裂后生产动态模拟器。根据库车天然裂缝发育程度综合量化分类,天然裂缝发育程度是影响压裂后产能的重要因素之一;裂缝系统连通差、发育差的气藏,压裂后也难以获得理想的增产效果。统计分析了裂缝参数与渗透率的关系,裂缝密度与测试渗透率相关性好,给出了裂缝密度与渗透率的关系,建立了渗透率地质模型。结合裂缝性砂岩气藏压裂井生产动态模拟器,通过拟合试采压力校正渗透率,打破了关井测试计算地层渗透率的传统做法。通过实例计算表明,所建立的多重介质渗流数学模型和渗透率地质模型是合理的,试采压力拟合精度高,校正渗透率准确且误差较小,为油田开发提供了一种新思路。  相似文献   

15.
低/特低渗透油藏压裂水平井布缝模式研究   总被引:1,自引:1,他引:0  
针对目前商业软件模拟低/特低渗透油藏非达西渗流特性的局限性,建立了考虑启动压力梯度、地层应力敏感性及裂缝长期导流能力的三维两相数值模拟模型;并以某低渗透油田的数据为基础,验证了模型的有效性;同时进行了压裂水平井布缝模式分析。压力波及区域及累积产量协同优化结果表明:压裂水平井布缝时应避免缝间干扰;在相同裂缝间距条件下,裂缝对称分布模式波及面积最大、产量最高;其次为裂缝交错分布模式和裂缝不对称分布模式。为了提高低/特低渗透油藏的采收率,应采取维持裂缝长期导流能力、注水补充能量等有效措施。  相似文献   

16.
火山岩油藏裂缝普遍发育,对地层渗透率的贡献具有决定性作用。通过对石炭系火山岩11口探井及评价井测井、试井、试油试采等资料的综合分析评价,认为测井方法得到的渗透率往往与生产动态不符,不能直接用于油藏开发评价。基于不稳定渗流原理,通过试油试采等动态方法反算,得到了井段平均渗透率;进一步结合地层有效厚度等数据,计算了储层渗透率。结果表明:测井渗透率与孔隙度具有较好的相关性,主要反映了基质的特征;动态方法得到的储层渗透率是测井渗透率的几十倍,且能够反映裂缝控制下的地层实际渗流能力。据此将火山岩储层分为双重介质型、裂缝型、孔隙型三种基本类型。结合具体油藏分析认为,双重介质型是火山岩油藏最主要的储层类型。  相似文献   

17.
裂缝是控制特殊岩性油藏开发效果的关键性因素之一,如何利用常规资料进行裂缝的识别和评价一直是困扰地球物理学家的重要问题。以准噶尔盆地西北缘八区下乌尔禾组油藏为例,通过岩心和成像测井资料标定表明,砂砾岩储层中深、浅侧向和微侧向测井曲线对裂缝的响应最敏感,其次是声波时差、密度和中子测井资料。据此建立了砂砾岩储层中裂缝的常规测井资料识别模式,并对开发区800多口井资料进行了解释。油藏开发动态资料表明,常规测井资料识别模式解释结果与生产实际符合较好。  相似文献   

18.
东坪气田基岩气藏是罕见的非常规裂缝性气藏,有效模拟天然裂缝的发育状况及展布特征十分困难。针对这一问题,在分析东坪气田基岩气藏储集空间特征的基础上,确立了基岩储层DFN离散裂缝模型的建立思路。先基于成像测井解释的裂缝倾角、裂缝方位角等裂缝特性参数,将东坪基岩储层裂缝分为两组走向近似垂直的天然裂缝,分别模拟了两组天然裂缝的密度分布。再以裂缝密度曲线作为目标曲线、地震综合属性体作为趋势约束体,建立了DFN离散裂缝分布模型。通过提取裂缝密度、孔隙度及渗透率等属性参数,研究了东坪基岩储层裂缝的分布特征,发现裂缝主要受断层控制,平面上和纵向上均存在强的非均匀发育特性。最后,运用东坪基岩储层生产动态特征和气藏数值模拟的产量历史拟合效果检验了DFN离散裂缝模型对基岩储层的适用性。研究成果可为非常规基岩储层的裂缝模拟提供强有力的技术手段。  相似文献   

19.
致密油藏需要经过大规模体积压裂改造才能获得工业油流。本文在物质平衡原理的基础上综合考虑了体积压裂施工过程中大量压裂液注入导致油藏压力升高,压后流体产出导致油藏压力降低以及裂缝与基质孔隙体积随压力非线性变化等致密油藏实际情况,进行合理假设,建立了模型方程,并推导计算了体积压裂有效改造体积和裂缝与基质的有效接触面积等参数。该方法解释出的三个新参数:能够提供有效渗流的裂缝总体积、油藏有效渗流体积、裂缝有效渗流面积,其物理意义更明确,对致密储层的开发设计及增产改造指导意义更强。将该方法应用到油田现场,并评价了3口已实施体积压裂油井的应用效果。现场应用表明该方法具有评价解释快捷、获取数据方便、成本低、准确度高的优点,适合于油田现场多井次大规模推广应用。  相似文献   

20.
塔巴庙上古储层高角度裂缝测井识别及分布特征研究   总被引:1,自引:0,他引:1  
利用双侧向电阻率和声波测井分析储层中高角度裂缝的测井响应特征,评价裂缝特征参数(裂缝宽度、裂缝孔隙度)的计算方法,并结合实际岩心观察和具体的测试资料,建立适合鄂尔多斯盆地塔巴庙地区上古储层的高角度裂缝测井响应参数场,在此基础上对研究区的高角度裂缝进行精确识别和定量预测,分析和评价了塔巴庙地区裂缝的发育特征和分布规律,认识到塔巴庙地区高角度裂缝在层位上的分布由下至上有变差的趋势,主要集中在山西组第二段和下石盒子组第一段.当计算裂缝宽度大于0.03 mm且裂缝孔隙度大于0.3%时,配合好的储层地质条件,一般都能获得工业产能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号