首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 546 毫秒
1.
农业机械领域的工程仿生研究概况与应用前景   总被引:3,自引:0,他引:3       下载免费PDF全文
工程仿生研究在农业机械领域有着较为广泛的应用,基于昆虫脱附减阻规律与食虫植物捕食现象的研究逐步形成应用于农业生产领域的工程仿生技术。本文从仿生农业机械脱附减阻及致灾农业昆虫滑移捕集滑板仿生制备的研究现状入手,主要分析了典型动植物非光滑表面形态结构对生理功能特性的表现规律与机理,阐述了工程仿生学在农业耕种机械及虫害机械化捕集防治领域的应用研究概况,并分析了工程仿生领域潜在的研究方向与发展前景。  相似文献   

2.
为了研究射流孔结构参数对水下射流减阻的影响,以金枪鱼为仿生对象建立仿生鱼模型,通过模拟鲨鱼鳃在仿生鱼模型侧面添加射流孔建立了射流模型.采用数值模拟方法,分析主流场速度及射流孔的形状、高度、位置、高宽比等单因素对仿生鱼表面减阻的影响规律.通过Design-expert软件对射流孔的结构参数进行响应面多目标参数优化,进一步分析了不同射流孔的结构参数在相互作用时对仿生鱼表面减阻的影响,最终确定了在距离鱼首5 mm处添加形状为后三角形,高度为6 mm,高宽比为4的射流孔时能够达到比较理想的减阻效果,此时模型的总阻力为2.510 21 N,相应的减阻率为6.49%.本文通过深入分析射流孔结构参数的影响,为水下射流减阻技术提供了重要的理论基础和实验指导,为仿生技术在水下流体力学领域的应用拓展了新的可能性.  相似文献   

3.
仿生射流表面减阻特性实验研究   总被引:2,自引:1,他引:1  
基于鱼类鳃裂部位仿生射流表面理论分析,对仿生射流表面回转体进行射流实验,研究其减阻特性。运用扭矩信号耦合器,分别对光滑表面实验模型和射流表面实验模型在不同旋转速度下进行摩擦扭矩测试,得到射流减阻特性曲线。研究结果表明:仿生射流表面具有较好的减阻效果,减阻率与实验模型转速、射流速度、射流孔径有着密切关系;射流最大减阻率达到10.8%。  相似文献   

4.
使用DrivAer汽车模型来研究仿生非光滑车外后视镜罩减阻降噪机理.风洞试验验证了LES(Large Eddy Simulation)和k-ε仿真模型的有效性,说明车外后视镜会导致空气阻力和空气噪声增加.在DrivAer汽车模型外后视镜罩造型表面应用仿生非光滑结构,仿真结果表明:车外后视镜上应用仿生非光滑结构,使整车阻力降低5.9%,侧窗外响度降低19.4%;仿生非光滑结构通过改变边界层流动状态,促使涡垫效应形成,减少来流能量损失,提高流场稳定性,进而对整车气动阻力和噪声产生积极的影响.  相似文献   

5.
表面具有大量微沟槽结构的鲨鱼皮具有良好的减阻效果,因此鲨鱼皮复制技术成为国内外减阻技术研究的热点之一.以鲨鱼表面微小盾鳞结构为复制模板,采用热压成型法和真空浇注法,分别在有机玻璃和不饱和树脂表面进行微结构复制,同时利用触针式轮廓仪和体视显微镜对不同材料和复制方法制备的仿生鲨鱼皮进行了对比分析.结果表明:相对于热压成型法,不饱和树脂作为复制模具材料,采用真空浇注法复制的液态硅橡胶仿鲨鱼皮,具有清晰完整的鲨鱼皮微沟槽结构,是一种较为可行的大面积高精度复制鲨鱼皮微沟槽的方法.  相似文献   

6.
离心泵仿生表面减阻降噪特性研究   总被引:1,自引:0,他引:1  
为了研究离心泵仿生叶片的减阻降噪特性,获得叶片壁面剪应力与减阻率、效率和噪声变化情况的关系,提取出了鲨鱼皮肤的表面特征,建立了具有Ⅴ型槽表面叶片的离心泵模型.通过剪切应力传输(SST) k-ω湍流模型对离心泵内部流场进行数值模拟,基于Proudman方法和声类比方程对泵内部声场进行了预测计算.研究结果表明:仿生表面能够有效控制叶片近壁面边界层的流体流动,在出口处的壁面剪应力梯度变小,工作面叶片的平均剪应力最大降幅达29%;仿生表面可以降低的最大减阻率为3.1%,离心泵的水力效率最大提高2.06%;仿生叶片沟槽表面能够改变叶轮流道内的涡结构,降低离心泵叶轮内部的湍动程度,减小流道内的声功率;与光滑叶片相比,仿生叶片的总声压级的降幅最大为2.68%;随着流量的增大,壁面平均剪应力的变化率、效率、总声压级及减阻率等都随之增大.  相似文献   

7.
带有仿生孔的活塞裙部试验研究   总被引:1,自引:0,他引:1  
受生物界凹坑形非光滑减阻耐磨表面的启发,以XL-2V型发动机为试验对象,根据活塞缸套运动副摩擦特点,以及发动机活塞失效形式,由三水平三因素正交表制订了9种仿生孔形试验方案.在发动机活塞裙部表面加工出优化后的变孔径、变行间距、凹坑和通孔交错的宏观仿生孔.通过发动机台架试验,检测出活塞磨损率和气缸压力变化率两个试验指标,对比验证仿生孔形活塞优于标准活塞的减阻、耐磨特性.得出试验优化设计的主次因素为孔径、孔分布类型和孔类型,最优水平为交错形、凹坑形和孔径甲.  相似文献   

8.
纳米微结构具有对光线进行调制的能力,在新型光电子和光子器件方面已显示出广泛的应用前景,而不同类型光学尺度纳米微结构的人工制备却始终是一个难点.从纳米仿生角度对利用生物模板构筑人工纳米微结构的制备手段和研究现状进行分类阐述;随后着重介绍了近年来出现的一种新型纳米结构仿生制备方法,即利用原子层沉积技术实现对生物模板纳米结构的三维复制和原子尺度的精确生长控制;最后探讨了仿生纳米结构的光学特性和潜在光学应用.  相似文献   

9.
制动盘摩擦磨损不均匀易引起制动失效,导致重大交通事故的发生。基于蝗虫体表因具有非光滑表面结构而表现出的良好耐磨特性,应用SolidWorks三维制图软件建立了不同制动盘表面微结构仿生模型。运用ANSYS Workbench仿真软件,对不同表面微结构制动盘在不同初始速度下摩擦制动过程中的制动时间及应力分布情况进行了分析。得到了仿生制动盘表面结构的变化对制动性能和耐磨性能的影响情况,表明直沟槽表面制动盘的制动性能和耐磨性能相对较好。该研究结果对寻求一种制动性能和耐磨性能良好的仿生制动盘表面优化设计方法提供了理论基础。  相似文献   

10.
为了优化某厢式货车的气动阻力系数,设计了驾驶室前部仿生减阻结构、顶部和侧部涡流发生器、底部涡流发生器等3种气动减阻装置。研究了3种单一气动减阻装置主要相关参数对气动阻力的影响,分别从货车外流场的速度轨迹、压力分布和湍动能分布等3方面详细分析了各单一气动减阻装置的减阻效果。在此基础上采用正交试验法对3种气动减阻装置的主要参数进行优化,获得最优减阻货车模型。研究表明:驾驶室前部突出部分的长度对货车整车气动阻力系数的影响比倾角更大;最优货车头部形状的倾角和长度分别为135°和300 mm,该模型的气动阻力系数为0.721 4,相对于货车原始模型的减阻率为8.93%;涡流发生器的高度和位置对货车的减阻效果均有较大的影响;涡流发生器可以增加货车尾部分离区流场的能量,使得尾涡区减小,气动压差阻力减小;3种气动减阻装置对货车气动阻力系数的影响大小依次为:底部涡流发生器、货车前部仿生减阻结构、顶部和侧部涡流发生器,其最优厢式货车模型的空气阻力系数为0.683 3,其复合减阻装置的最佳减阻率为13.8%。  相似文献   

11.
三角形沟槽旋成体表面减阻性能的数值模拟   总被引:2,自引:0,他引:2  
基于仿生微小非光滑表面具有减黏降阻特性的基本思想,在高速转动旋成体表面布置不同深度和间距的三角形沟槽.采用RNGκ-ε模型对其三维流场进行模拟,分别计算表面光滑旋成体与表面具有三角形沟槽的旋成体壁面阻力系数,对比两者壁面剪应力大小可知,将三角形沟槽布置于高速旋转的旋成体表面,可降低旋成体在高速转动时壁面的空气阻力,从而降低动力消耗,并且沟槽深度和间距均对旋成体壁面阻力产生不同影响.与光滑旋成体相比,三角形沟槽旋成体最大减阻率为12.060%.  相似文献   

12.
仿生二级微沟槽表面减阻特性数值模拟   总被引:1,自引:0,他引:1  
快速游动的鲨鱼,其皮肤表面布满沿流动方向的沟槽,这种沟槽能够减小鲨鱼游动过程中的阻力。通过仿生技术人们设计了一系列具有单一尺度的沟槽结构,如V型、L型、U型等(定义为原始沟槽),并获得了一定的减阻效果。然而通过仔细观察,发现鲨鱼皮肤表面的沟槽并非是单一尺度的。根据这一启发,通过在原始V型沟槽顶部两侧增加小尺度三角形突起,设计了一种二级沟槽表面。利用RNGk-ε湍流模型,对原始V型沟槽和二级沟槽表面进行了流场分析。讨论了在不同雷诺数的情况下,两种沟槽壁面对湍流边界层内速度分布、沟槽壁面切应力及减阻效果的影响。计算结果表明,在一定雷诺数范围,原始V型沟槽最佳减阻4.6%,二级沟槽结构最佳减阻8.07%,二级沟槽减阻效果明显优于原始V型沟槽。二级沟槽表面能够更有效地抑制边界层内湍流流动,减小了流体流动的黏性阻力,具有更好的减阻效果。  相似文献   

13.
采用RANS和LES相结合的数值计算方法,系统分析了给定条件下二维平板横置小肋对湍流摩擦阻力的影响。并开展了小肋外形及布置参数的优化研究。使用RANS方法计算平板阻力,而LES方法则着重分析流场变化过程,以分析减阻机理。通过对不同外形和参数小肋的CFD计算结果的比较分析,得到了该计算条件下减阻效果最佳的小肋参数,与光滑平板对比,最大减阻近4%。通过对流场的分析可以看到,横置小肋之间产生涡柱,改变了流体与平板的作用方式及近壁速度剖面,进而可以降低摩擦阻力。研究为进一步分析横置小肋在更宽速度和雷诺数范围内的有效性及开展全面的参数优化研究提供了基础。  相似文献   

14.
为了分析非光滑表面对离心泵性能的影响,基于仿生凹坑表面的减阻特性,将凹坑型非光滑单元体排布于离心泵叶片的工作面,建立具有非光滑表面的叶轮离心泵的流动减阻特性分析模型,通过RNGk-ε湍流模型对离心泵内部流场进行数值模拟,分析具有非光滑表面叶轮的流动减阻特性,研究不同流量下非光滑表面对叶片近壁面的速度分布、剪应力和离心泵内部流场的影响.结果表明:凹坑型非光滑表面能够降低因黏性阻力产生的叶轮扭矩,其扭矩的最大降幅为5.8%;非光滑表面能够有效控制叶片近壁面边界层的流体流动,减小叶片的壁面剪应力;凹坑型非光滑表面能够降低离心泵叶轮内部流体的湍动程度,减小湍动产生的能量耗散,使叶轮内部的流体流动更加稳定并提高离心泵的效率.  相似文献   

15.
Based on interfacial convection in the presence of solvent evaporation, a novel method for the fabrication of a micro-structured surface is proposed to facilitate drag reduction. A mixture was coated on a substrate through a specially developed spray-painting system. Micron scale pits formed spontaneously in the coated surface because of interfacial convection and deformation driven by the gradient of the interfacial tension. Experimental results indicated that particles in the mixture played a crucial role in pit formation, and with a suitable selection of particle size and dosage, the characteristic parameters of the pitting could be controlled. The drag reduction experiments were first performed in a water tunnel, and the results showed that the micro-structured surface had a remarkable drag reduction performance over a great range of flow speeds.  相似文献   

16.
以简化准三维模型D型钝体为研究对象,通过数值仿真手段,利用零质量合成射流器理论进行了D型体主动流动控制和主被动结合的流体控制研究发现,在尾部分离点进行射流控制时,高频射流有助于钝体减阻,减阻效果可以达到1.78%。主被动结合的锯齿和射流加强了尾迹三维流动结构,破坏了准三维模型的展向流动结构,使得减阻效果较好。采用主被动结合控制的射流为低频和高频时减阻效果为20.86%和21.20%。  相似文献   

17.
针对长输管道中存在的能源消耗问题,分别从湍流边界层流动特性、拟序结构、条带结构、转捩等方面归纳了沟槽面湍流减阻的国内外研究现状,讨论了沟槽的几何形状和尺度、流场压力梯度、沟槽面放置方式对沟槽减阻效能的影响。对沟槽面的减阻机理进行了综述,分析了存在的问题。指出需要利用先进的实验技术如PIV等图像处理手段,并结合计算流体力学软件对湍流边界层的瞬时流场进行研究,以找出沟槽面湍流减阻的机理。数值模拟了在平板中部横向布置的下凹沟槽的流场情况,得到了一种小涡流动结构,同时验证了这种结构在减阻中的作用,阐述了对减阻的另一种认识,并对沟槽面湍流减阻技术及其工业利用进行了展望。  相似文献   

18.
目前圆柱绕流减阻方案的探索一直是绕流研究的热点,有关棱柱作为扰流柱对圆柱减阻效率影响的研究却较少.基于不可压缩黏性流动Navier-Stokes控制方程,利用OpenFOAM对附属棱柱下圆柱绕流问题进行数值模拟.在圆柱上游或下游设置双扰流棱柱,研究了雷诺数为200时不同角度、间距比的棱柱对其升力、阻力系数和涡脱频率的影响.结果表明:附属棱柱能有效改善圆柱表面的压力分布,降低压差阻力;上游设置棱柱时对圆柱的减阻效率可以达到37.21%,较下游设置棱柱的减阻效率更高;下游设置棱柱时对圆柱升力的抑制效率高于上游棱柱,可以达到99.86%;上下游同时设置棱柱时对圆柱升力、阻力的抑制效果能得到进一步提高,较单圆柱平均阻力系数可以降低54.63%,升力系数可以降低99.94%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号