首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
在不同比例 L-半胱胺酸 /二硫醇混合溶液中制备了混合自组装膜修饰电极。经过 L-半胱胺酸的还原脱附后 ,利用循环伏安技术研究了吡咯在 L -半胱胺酸 /二硫醇自组装膜修饰电极表面聚合的过程和影响聚合的几个因素。实验结果表明 ,下面的几个因素影响着吡咯在自组装膜上的聚合 :L-半胱胺酸在混合膜中的比例、支持电解质 p H的大小以及聚合单体分子的大小。  相似文献   

2.
用不同制备方法得到了L-半胱胺酸自组装膜修饰电极,并采用不同的电化学方法表征了L-半胱胺酸自组装膜修饰电极。  相似文献   

3.
在不同比较L-半胺胺酸/二硫混合溶液中制备了混合自组装膜修饰电极。经过L-半胱胺酸的还原脱附后,利用循环伏安技术研究了吡咯在L-半胱胺酸/二硫醇自组装膜修饰电极表面聚合的过程和影响聚合的几个因素。实验结果表明,下面的几个因素影响着吡咯在自组装膜上的聚合:L-半胱胺酸在混合膜中的比例、支持电解质pH的大小以及聚合单体分子的大小。  相似文献   

4.
以大豆(029-289,浙春2号)为实验材料,在水培条件下,用不同量的酸、铝(T1:0 mmol·L-1 Al+pH 3;T2:0 mmol·L-1 Al+pH 4;T3:0 mmol·L-1 Al+pH 5;T4:0.5 mmol·L-1 Al+pH 5;T5:1 mmol·L-1Al+pH 5;T6:1 mmol·L-1 Al+pH 3)处理24,,61,2和24 h后,测定大豆幼苗根系的可溶性蛋白质含量与超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)的活性.结果显示:随着酸、铝处理时间的增加,大豆根系的可溶性蛋白质含量及SOD,POD和CAT的活性均呈先上升后下降的变化趋势,在酸、铝处理6 h时达到最大值,24 h时达到最小值.在无铝影响下,随着pH的升高,可溶性蛋白质含量及SOD,POD和CAT的活性先升高后降低,在T2处理下达到最大值.在pH 5条件下,随着铝浓度的增加,SOD活性先增大后减小,在T4处理下出现最大值;POD和CAT的活性随铝浓度的增加逐渐增大.在T6处理下,大豆根系SOD,POD和CAT的活性达到各酸、铝处理的最小值,说明该处理对大豆根系的伤害最大.  相似文献   

5.
含SD和KP化学合成制药废水的酸析预处理研究   总被引:2,自引:0,他引:2  
含磺胺嘧啶(SD)和酮基布洛芬(KP)的合成制药废水对微生物有较强的抑制作用,故不能使用生物法对其进行处理.本文研究表明,通过硫酸酸析可以明显改善废水的可生化性,并且有利于厌氧菌和好氧菌的驯化、筛选和复配,经过酸析后的废水适宜进行厌氧和好氧处理.经酸析-厌氧-好氧联合处理工艺后,废水的化学需氧量(COD)值由2 525 mg·L-1降到150 mg·L-1以下,最终出水COD值为145 mg·L-1,COD总去除率达到94%.试验分析证明最佳的酸析条件是pH=2,酸析时间为40 min.酸析预处理是后续微生物处理高浓度难降解含磺胺嘧啶(SD)和酮基布洛芬(KP)的合成制药废水的关键.  相似文献   

6.
以浓度1.0mol.L-1的硫酸为改性剂,微波辅助制备酸改性粉煤灰吸附剂.通过SEM,FTIR对粉煤灰微观形貌观察及结构表征,用分光光度法对其吸附性能进行分析,结果表明:用硫酸用量为4g.mL-1、微波功率400W、微波时间8min时制得的酸改性粉煤灰来处理含砷废水,常温下,当吸附剂用量10g.L-1,废水pH=6,吸附时间30min时,砷的脱除率可达90.29%.  相似文献   

7.
纳滤膜对氨基酸的分离研究   总被引:2,自引:0,他引:2  
选择NTR7450膜对L-苯丙氨酸和L-天冬氨酸水溶液进行了纳滤分离过程研究,讨论了不同pH下氨基酸的透过特性.在pH=5~8时,NTR7450膜对L-苯丙氨酸和L-天冬氨酸的截留率分别为0和90%.根据实验结果进行了模拟计算.结果表明,通过调节pH值,L-苯丙氨酸和L-天冬氨酸可以被有效地分离.  相似文献   

8.
采用分散聚合法合成壳聚糖-聚丙烯酰胺P(CMTC-AM-DMC)絮凝剂,研究了该絮凝剂投加量、pH、搅拌强度和时间等因素对Cu2+的絮凝捕集性能,并与聚合氯化铝(PAC)以及实验自制的羧甲基硫脲基壳聚糖(CMTC)进行比较.结果表明:当Cu2+质量浓度为20 mg· L-1,pH=6~8,搅拌强度为150 r·min-1时,投加20~40 mg·L-1的P(CMTC-AM-DMC)絮凝剂对Cu2+的捕集率即可达到90%,PAC的用量为240 mg·L-1,pH为6时,对Cu2+的捕集率为90%.CMTC的用量为1~2 mg·L-1,pH为6时,对Cu2+的捕集率为80%~90%.  相似文献   

9.
通过循环伏安法制备了聚L-半胱氨酸修饰电极,利用该修饰电极研究了Cu2+存在下多巴胺(DA)与鲱鱼精DNA在Tris-马来酸缓冲溶液中的相互作用.结果表明:在pH7.0 的Tris-马来酸缓冲溶液中,DA在聚L-半胱氨酸复合膜修饰电极上有一对明显的氧化还原峰,加DNA后氧化还原峰电流明显下降,说明DNA和DA能发生相互作用.再加入Cu2+后氧化还原峰电流减小更大,说明Cu2+对DA和DNA的相互作用有较大影响.  相似文献   

10.
考察在不同温度、pH值下,L-组氨酸在活性炭上的吸附平衡.结果表明,在L-组氨酸和活性炭等电点附近时,L-组氨酸的吸附量比偏离等电点时的大;25℃时的吸附量比80℃时大;在80℃和pH=1.0时,L-组氨酸在活性炭上的吸附等温线可用Freundlich模型进行似合,拟合结果为q=2.591 4c0.809 7.  相似文献   

11.
利用自组装膜技术,将离子液体和半胱氨酸修饰到金电极上,制备离子液体/半胱氨酸自组装膜修饰电极,以循环伏安法和交流阻抗法研究其电化学性质,并用于抗坏血酸(AA)的电催化氧化。结果显示:当AA的浓度在1×10-6~8×10-4mol/L范围内时,与所测得的氧化峰电流呈良好的线性关系,检出限为8.6×10-7mol/L。催化效果明显,可实现对AA的电化学检测。  相似文献   

12.
采用自组装修饰法将细胞色素C修饰到以L-半胱氨酸为连接剂的金电极上,并运用循环伏安法(CV)、电化学阻抗法(EIS)等方法研究了该电极的电化学行为.测定了细胞色素C有关的电化学参数.  相似文献   

13.
选用L-半胱氨酸(L-Cys)通过S-Au键修饰到金电极上形成L-半胱氨酸自组装单分子膜修饰金电极(L-Cys/Au),探讨了该电极形成机理并发现它对抗坏血酸具有电催化作用.进而利用示差脉冲伏安法对各种样品中的抗坏血酸含量测定,结果令人满意.  相似文献   

14.
高半胱氨酸SAM膜电极的制备及其电化学行为研究   总被引:4,自引:0,他引:4  
研究了高半胱氨酸在金电极上形成单分子自组装膜的条件,并利用循环伏安法,交流阻抗谱研究了[Fe(CN)6]^3-/4-在高半胱氨酸SAM膜电极上于不同pH值溶液中的电化学行为。循环伏安结果表明,在pH大于高半胱氨酸等电点的溶液中,[Fe(CN)6]^3-/4-在膜电极上的循环伏安曲线峰电流明显降低,峰分离差增大,说明随pH值的增加,[Fe(CN)6]^3-/4-离子对在SAM膜电极上的可逆性变差;交流阻抗图谱显示,由于SAM膜电极表面带负电荷时,[Fe(CN)6]^3-/4-难以靠近电极表面,使其与电极表面的电子交换反应变得困难,在SAM膜电极上的电化学反应电阻Rct明显增加,并且随电解质溶液的pH增加而增加。  相似文献   

15.
采用小牛胸腺DNA修饰金电极并用纳米金增强了DNA在电极上的吸附量.Co(bpy)3 3被用作电子媒介体来表征通过恒电位法吸附在电极表面的DNA的变化过程,并通过循环伏安法测定Co(bpy)3 3在电极上的富集量;同时,考察了DNA修饰金电极在不同pH值及不同温度下的稳定性,发现纳米金使DNA修饰电极稳定性增加.  相似文献   

16.
研制了一种纳米二氧化钛薄膜修饰的金电极(nano-TiO2/Au),用循环伏安法研究了亚硝酸根(NO2)在该电极上的电化学行为,并对实验条件进行了优化.实验结果表明,该电极在酸性介质中(0.1mol/LH2SO4)对NO2的氧化具有高度灵敏性和选择性,且大多数阳离子对NO2的测定无干扰.NO2的氧化峰电流与其浓度在2.0×108~4.0×104mol/L范围内呈良好的线形关系,检测限可达2.0×109mol/L.  相似文献   

17.
采用化学修饰和电沉积方法在Ti表面镀覆一层结合牢固的Sn层,从而制成钛基锡电极,该电极和Pb电极比较,对L-半胱民合成反应,具有更高的电催化活性,电流效率大于99.0%,电解收率为98.0%以上,明显优于Pb电极电解。  相似文献   

18.
SAM修饰金电极的电化学和光电化学研究   总被引:2,自引:0,他引:2  
综述了自组装单分子膜(SAM)修饰金电的修饰方法及其在电催化、光电化学领域的研究进展等内容,探讨了SAM修饰金电极的应用前景和该方法进一步的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号