首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
稀疏表示人脸识别算法的主要思想是:一个未知的测试图像可以近似表示为所有与其隶属同类的训练样本的一个线性组合.然而,人脸之间存在着极大的相似性,同时易受到外部环境的影响,人脸分类的本身存在着一定的不确定性.针对这种不确定性,结合模糊集合理论,提出了一种新的模糊稀疏表示人脸识别算法.首先,引入一个非线性函数描述人脸的相似性程度.然后,基于该相似性度量以及最近邻分类器思想,定义一个自适应的模糊隶属度函数来分配人脸对类的隶属程度.而这一过程恰使得这些隶属度是稀疏化的.最后,将稀疏化的模糊隶属度作为训练样本表示测试样本的权值系数,进而重构测试图像.采用MATLAB在ORL和Yale人脸数据库上进行仿真实验,验证了该算法的有效性和稳定性.  相似文献   

2.
为进一步有效提升稀疏表示人脸识别系统的识别率和可靠性,在分析人脸图像稀疏表示系数分类能力的基础上,提出了一种基于残差加权的稀疏表示人脸识别新方法.该方法通过对类残差图像关于所属类稀疏表示系数的l2范数进行归一化加权,有效提升了原始基于类残差判决的识别能力.仿真实验结果表明:改进的基于残差加权的稀疏表示方法能够有效提高系统的识别性能.  相似文献   

3.
完备的稀疏表示方法近年来应用在人脸识别中并取得较好的结果,它可以仅利用样本的随机投影完成对测试样本的识别。在实际应用中,由于受光照、遮挡等因素的影响,测试样本并不能通过训练样本的线性组合得到很好的稀疏重构。本文提出了基于Metaface字典学习与核稀疏表示的人脸识别方法,借助核技巧,将数据样本和字典集映射到高维的未知空间,以解决特征的非线性相似问题。在核空间对数据样本进行稀疏重构,得到数据在核空间的一种简洁的稀疏表达方式从而提高识别率,而Metaface字典学习框架的引入可以得到更加精炼的字典,从全局上提高识别率。通过在ORL人脸库、Yale人脸库和AR人脸库的实验表明,同等情况下,本文提出的方法优于PCA,SVM,SRC等方法,进一步提高了人脸识别率,具有较好的应用价值。  相似文献   

4.
为消除非受控训练环境中光照/表情变化的不利影响,控制部分遮挡/伪装对人脸图像的破坏程度,提出了一种基于低秩矩阵恢复的字典优化设计,以增强稀疏表示人脸识别的性能.首先对存在非受控干扰成分的训练字典进行低秩矩阵恢复,获得相对\"干净\"的训练图像进行特征提取;接着采用分块相似性先验嵌入稀疏编码的方法实现对人脸图像的分类.实验结果表明,通过改进稀疏编码字典的鉴别能力,系统能更有效地抑制光照、表情、遮挡/伪装的影响,其识别的稳健性和鲁棒性得到了明显提升.  相似文献   

5.
基于单演特征和稀疏表示的人脸识别   总被引:1,自引:0,他引:1  
为了使得稀疏表示分类方法具有更好的识别效果,提出了基于单演特征的稀疏表示分类( MSRC) 方法. 相对于Gabor 特征,单演特征能够用于提取图像的相位信息,而相位信息对光照不敏感,因此MSRC 方法能提高图像的光照鲁棒性. 相对于Gabor 特征的多尺度和多方向,单演特征能够减少特征的处理时间. 实验结果表明: 文中所提的方法具有使用价值,识别率和速度方面得到了一定的提升.  相似文献   

6.
提出一种基于稀疏表示的时间序列最近邻分类模型,旨在通过提取时间序列的关键特征,去除冗余信息,达到减少噪声干扰的目的.该模型首先求解时序数据基于过完备字典的稀疏表示,然后利用非零系数及其对应的原子重构原始序列,最后利用基于距离的分类器进行分类.在18个时间序列公开数据集上的实验结果表明,最近邻分类模型能够提高传统的最近邻分类器的分类准确率.  相似文献   

7.
姿态鲁棒的分块稀疏表示人脸识别算法   总被引:1,自引:0,他引:1  
针对稀疏表示人脸识别算法对姿态变化敏感的问题,提出一种姿态鲁棒的分块稀疏表示人脸识别算法,通过对人脸进行分块表示并利用仿射变换模型对姿态变化建模,提高稀疏表示人脸识别算法对姿态变化的鲁棒性.同时,通过最小化图像分块重构误差来估计仿射变换参数初值,有效提高仿射变换参数估计精度,进而提升人脸识别算法的性能.实验结果表明,本文算法可在一定程度上克服姿态变化造成的对齐误差,比现有相关算法具有更好的姿态鲁棒性和识别性能.  相似文献   

8.
基于Gabor小波能量子带分块的稀疏表示人脸识别   总被引:1,自引:0,他引:1  
基于稀疏表示分类的人脸识别通常提取特征脸、随机脸和费歇尔脸这些整体特征,忽略了局部特征在克服光照和表情变化方面的优越性。针对以上问题,本文提出了基于Gabor小波能量子带分块的稀疏表示人脸识别算法。首先将人脸图像进行不同尺度和方向下的Gabor小波变换,对得到的每个能量子带进行分块,然后将各子块能量信息融合组成子带的特征向量,再将各能量子带特征向量融合组成增强的Gabor特征向量,最后将该特征应用于稀疏表示人脸识别。实验结果表明,该算法对于光照和表情变化具较好的的鲁棒性。  相似文献   

9.
采用联合动态稀疏表示方法构造一种新型的多图像人脸识别模型.该模型在多张人脸图像的稀疏表示矩阵上,利用动态数集得到联合动态稀疏表示矩阵,识别多图像的人脸.在多张人脸图像作为测试样本的情况下,利用多图像之间的关联性提高人脸图像识别的准确率.最后利用CMU人脸图像库对该算法进行仿真,结果表明其识别率较其他算法有很大的提高.  相似文献   

10.
稀疏表示的分类器(Sparse Representation-based Classifier,SRC)利用全部的训练集进行训练来得到一个完备基,这使其时间复杂度增长,同时,稀疏表示算法过分强调稀疏项对于分类的作用而忽略了类别之间的协作稀疏表示对于分类的影响。针对这个问题,本文在徐勇等人提出的TPTSR(Two-Phase Test Sample Sparse Representation)算法的基础上提出了一种改进算法,即改进的两阶段协作稀疏表示分类器(Improved Two-Phase Collaborative Sparse Representation Classifier,ITPCSRC),该算法尝试通过寻找一个具有与测试样本关联性最大而且又满足SRC关于训练样本基本假设的完备基来对测试样本进行协作的稀疏表示。本方法在ORL人脸库、Yale人脸库和AR人脸库上进行实验,并与目前最新的基于稀疏表示改进的分类器算法相比,ITPCSRC算法识别率得到了显著提高。  相似文献   

11.
Sparse Representation based Classification (SRC) has emerged as a new paradigm for solving recognition problems. This paper presents a constraint sampling feature extraction method that improves the SRC recognition rate. The method combines texture and shape features to significantly improve the recognition rate. Tests show that the combined constraint sampling and facial alignment achieves very high recognition accuracy on both the AR face database (99.52%) and the CAS-PEAL face database (99.54%).  相似文献   

12.
二维照片的人脸识别对光照、姿态和化妆等因素很敏感,故提出了一种将三维局部二值模式(3DLBP)和核判别分析(KDA)相结合的三维人脸识别方法.采用3DLBP描述人脸深度图像的特征,高斯核函数KDA作为分类器,使用Chi平方统计改进高斯核函数、采用FRGCv2.0中2003春季采集的三维人脸库进行实验.实验结果表明,该方法在每人2个训练样本时,识别率为91.8%,而PCA和3DLBP的识别率分别为60.4%和78.3%;当每人的训练样本数增至6个时,识别率为98.4%,而PCA和3DLBP的识别率分别为87.8%和96.3%。  相似文献   

13.
利用稀疏表示对图像分类时,需要将二维图像转换为一维特征向量,这大大增加了计算复杂度和忽略了图像矩阵中固有的局部结构信息.为了解决上述问题,设计了完全基于二维特征矩阵的稀疏表示人脸分类方法.首先将二维图像转为2D Fisherface矩阵,然后直接利用二维矩阵求解稀疏表示和进行分类.整个识别过程中,不需要将二维图像转换为一维向量.实验结果表明,二维特征矩阵在稀疏表示分类中是十分有效的,设计的方法可以更快的运算速度达到更高的识别率.在ORL人脸数据库和Extended Yale B人脸数据库上的识别率分别达到97.5%和99.3%.  相似文献   

14.
基于主元分析与支持向量机的人脸识别方法   总被引:27,自引:1,他引:27  
基于支持向量机(SVM)在处理小样本,高维数及泛化性能等强方面的优势,提出了一种基于主元分析(PCA)与SVM的人脸识别方法,利用PCA方法对人脸图像进行特征提取,再利用SVM与最近邻分类器相结合的策略对特征向量进行分类识别,剑桥ORL的人极数据库的仿真结构验证了本算法是有效的。  相似文献   

15.
基于偏最小二乘回归分析,提出了一种新的人脸表示与重构方法.与主成分分析相比,通过偏最小二乘所抽取的低维人脸表示特征具有更好的分类性能.在ORL人脸数据库上的实验结果表明,基于偏最小二乘方法对于测试图像进行重构优于主成分分析方法,并且分类结果也好于后者.  相似文献   

16.
基于图像欧氏距离的人脸描述和识别方法   总被引:1,自引:0,他引:1  
采用图像欧氏距离将灰度值及其坐标关系相结合用于表征人脸,使之对于图像的短距离晃动比较鲁棒,同时将图像欧氏距离应用于模糊支持向量机中.采用ORL人脸库进行分类实验,并与已发表论文的实验结果进行比较,验证了该方法的有效性.  相似文献   

17.
对线性回归分类算法进行了改进。考虑了线性回归分类算法中没有考虑的类间信息,通过选择类模式的投影方向判别不同类的模式,不同类的模式互相远离,相同类的模式尽可能靠近来估计投影矩阵;再利用投影矩阵将训练图像及测试图像投影到各类的特征子空间;最后,计算出测试图像与训练图像间的距离,利用K-近邻分类器完成人脸的识别。在FERET人脸数据库上进行实验验证。实验结果表明,相比其他回归分类算法,本算法取得了更好的识别效果。  相似文献   

18.
基于多分类器融合的人脸识别方法   总被引:3,自引:0,他引:3  
提出了一种融合整体和局部信息进行人脸识别的新方法。首先利用DCT LDA方法提取表达人脸信息能力强的左眼、右眼和嘴巴的局部特征,利用F isherface方法和简单频谱脸方法提取人脸的整体特征,然后应用多分类器组合规则融合整体和局部特征,实验结果表明利用加法融合规则在ORL和FERET数据库上识别率分别达到98.45%和90.79%,说明了该方法的有效性,同时也表明将多分类组合应用于人脸识别是一种比较可行的思路。  相似文献   

19.
基于整个数据集的稀疏表示(sparse representation classification,SRC)用于人脸识别在很大程度上影响了运行效率.如何利用较少样本稀疏表示在保证计算效率的同时,识别率也有一定提升,尤其是面对光照、角度、姿态等非受控环境,目前仍是一个问题.考虑到协同表示(collaborative representation classification,CRC)基于l2范数稀疏求解的优势,为进一步提升CRC的整体分类性能,引入类内近邻,提出一种二次近邻稀疏重构表示法.该方法首先在原始训练集上选择各类训练样本中与待测样本距离相近的若干样本组成近邻样本集,并协同表示,接着分别用各类近邻样本重构待测样本,再次选择与待测样本相近的若干重构样本协同表示,最终实现模式分类.在ORL和FERET数据库上的仿真实验表明,相比现有的一些CRC算法,该方法在一定程度上缩短了运行时间,并使识别更精确.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号