首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
采用化学气相沉积法,通过在纳米硅表面原位制备碳层而获得具有坚固核壳结构的nano-Si@C锂离子电池负极材料,该材料能有效克服硅负极在充放电过程中出现的体积变化大和电导率低的问题.实验结果表明,nano-Si@C具有优良的电化学性能,首次库伦效率为87.0%,循环100次仍能保持高比容量(1133 mA·h·g-1)和高容量保持率.循环前后的透射电子显微镜(transmission electron microscopy,TEM)结果证明,紧密坚固的核壳结构使nano-Si@C在充放电过程中保持较好的结构稳定性,有利于电极的循环稳定.  相似文献   

2.
针对锡负极材料充放电过程中的体积效应,综合采用组分改性与结构改性的研究方法,合成Cu_(0.85)Sn_(0.15)合金负极材料,研究Cu的掺入对Sn电化学稳定性的影响,同时基于优化改性的Cu_(0.85)Sn_(0.15)合金开展核壳结构设计,研究最佳核壳结构构造工艺.结果表明,掺入Cu能在一定程度上改善Sn的循环稳定性,Cu_(0.85)Sn_(0.15)样品的容量在60次循环后趋于稳定,库伦效率较高;核壳结构处理能大幅提升Cu_(0.85)Sn_(0.15)合金负极材料的循环稳定性,采用球形改性天然石墨作为内核的G@Cu_(0.85)Sn_(0.15)@C负极材料首次放电比容量接近800 m Ah/g,充电比容量最大值超过了500 m Ah/g,100次容量保持率大于85%.核壳结构能将Cu_(0.85)Sn_(0.15)合金的体积效应控制在"囚笼"式结构内,利于材料容量的发挥及循环稳定性的提升.核壳结构的可控制备对实现锡基合金负极材料的产业化具有重要的作用.  相似文献   

3.
针对锡负极材料充放电过程中的体积效应,本文综合采用组分改性与结构改性的研究方法,合成Sn-Cu合金负极材料,研究Cu的掺入对Sn电化学稳定性的影响,同时基于优化改性的Sn-Cu合金开展核壳结构设计,研究最佳核壳结构构造工艺。结果表明,掺入Cu能在一定程度上改善Sn的循环稳定性,Sn-Cu样品的容量在60周循环后趋于稳定,库伦效率较高;核壳结构处理能大幅提升Sn-Cu合金负极材料的循环稳定性,采用球形改性天然石墨(d50=15μm)作为内核的样品首次放电比容量接近800mAh/g,充电比容量最大值超过了500mAh/g,100周容量保持率大于85%,最佳的核壳结构构造工艺是使用片状石墨作为内核,内核粒径为d50=15μm,外壳厚度为柠檬酸裂解碳占复合材料质量比的20%。核壳结构能将Sn-Cu合金的体积效应控制在“囚笼”式结构内,利于材料容量的发挥及循环稳定性的提升。核壳结构的可控制备对实现锡基合金负极材料的产业化具有重要的作用。  相似文献   

4.
采用间苯二酚-甲醛为碳源,三聚氰胺为氮源,以NaOH为蚀刻剂,成功合成氮掺杂碳包覆的蛋黄壳结构硅(Si@void@N-C)锂离子电池复合负极材料.对样品进行XRD、 SEM和X射线电子能谱,透射电子显微镜(TEM)和电化学测试等表征及测试.结果表明,成功合成了蛋黄壳结构的Si@void@N-C复合负极材料.同时,该复合材料具有优异的电化学性能,以0.1 A/g的电流密度进行充放电,首次容量可达1 282.3 mAh/g,经过100次循环后,其比容量仍高达994.2 mAh/g,其容量保持率为77.5%,表现出了良好的循环性能.Si@void@N-C材料中,氮掺杂的碳壳可以增加复合材料的导电性,同时,蛋黄壳结构可有效缓解硅的体积效应,有利于形成稳定的SEI膜,从而提高电池的循环稳定性.  相似文献   

5.
骆真  曹宏  薛俊 《应用科技》2023,(5):169-174
为进一步优化多孔类核壳结构硅碳负极材料的制备方法,通过“两步喷雾造粒、一步碳化成型”法制备出了具有石榴结构状的锂离子电池硅碳负极材料。采用X射线衍射(X-ray diffraction, XRD)、扫描电子显微镜(scanning electron microsope, SEM)和热重分析(thermogravimetric analysis, TGA)等方法对材料的物理性质进行了表征。为提升复合材料的导电性与结构稳定性,提升其充放电性能,将碳纳米管(canbon nano tube, CNT)导电剂与鳞片石墨与复合材料进行了复合,得到了Si@Pore-C/CNT/G@C复合材料。该材料在0.1 C的电流密度下,在50次充放电循环后具有高达95.6%的容量保持率,并且在经过97次较长循环后仍具有82.8%的容量保持率。所提出的制备方式简单高效,具有量产的潜力,无需使用酸碱刻蚀或其他牺牲模板,是一种绿色、高效的制备方案。  相似文献   

6.
硅是一种具有应用前景的负极材料。为了解决在电化学循环过程中由于硅电极体积变化较大、导电性比较差而造成负极材料比容量迅速衰减及其循环性能不稳定的问题,本研究利用溶胶-凝胶法,经过镁热反应制得具有三明治结构的负极材料石墨烯-硅-石墨烯;通过实验研究发现负极材料G-Si-1:1具有较好的电化学性能,在电流密度为0.1 A/g时首次放电比容量为1150 m A·h·g~(-1),循环100周时放电比容量为534.2 m A·h·g~(-1)。负极材料石墨烯纳米片负载硅纳米颗粒的合成路线较为简单,并且具有较高的放电比容量和较好的循环性能,在未来具有较好的应用前景。  相似文献   

7.
采用光辅助电化学刻蚀和无电镀银方法,制备出一种可用于三维锂离子电池的覆银硅微通道板(Ag/Si-MCP)负极结构.利用XRD和扫描电镜(SEM)对材料特性进行表征;并在氩气氛保护下以锂片为对电极封装为CR2025半电池,采用恒流充放电测试、循环伏安法(CV)及交流阻抗法(EIS),对银覆盖层对电极性能的影响进行了细致的分析.在0.02 V~1.5 V电位(vs.Li+/Li)范围内以10 mA·g(-1)电流密度进行恒流充放电测试.样品在首次充电(硅的锂合金化)过程中获得高达3 484.7 mAh·g(-1)电流密度进行恒流充放电测试.样品在首次充电(硅的锂合金化)过程中获得高达3 484.7 mAh·g(-1)的比容量值,且在首次充放电循环中库仑效率达到95.97%.并在随后的循环中,表现出优于未经覆银处理的硅微通道电极的性能.  相似文献   

8.
以兰炭为原料,KOH为活化剂,利用微波辐射对兰炭进行脱氢、炭化、活化制备活性炭材料.采用X射线衍射(XRD)、傅里叶红外光谱(FTIR),透射电子显微镜(TEM)等手段对材料的结构和形貌进行表征.通过恒流充放电、循环伏安(CV)对材料的电化学性能进行测试.结果表明:兰炭基活性炭用于锂离子电池负极材料具有优异的循环稳定性和良好的库伦效率.材料在充放电电流密度为200mA·g-1时,首次放电比容量达1 850mAh·g-1,循环60周后容量仍然保持在713.8mAh·g-1.  相似文献   

9.
氧化亚硅因其高理论比容量和丰富自然资源被认为是下一代高比能量锂离子电池负极材料之一。然而,氧化亚硅在充放电过程中由于较大体积变化引起电极结构不稳定,造成性能的衰减。本研究提出一种碳包覆层–氧化亚硅–石墨烯的三明治结构,有效提高氧化亚硅负极材料在充放电过程的结构稳定性。石墨烯和碳包覆层构建出一个围绕氧化亚硅颗粒的三维电子传输网络,不仅提高材料的电极反应动力学过程,而且能均化材料表面的局部电流和电极反应程度,实现材料体积的均匀变化。此外,存在于氧化亚硅和石墨烯之间的硅–氧–碳键可以增强颗粒在石墨烯片层上的附着强度,防止氧化亚硅在嵌脱锂过程中从石墨烯上脱落。得益于上述结构优势的协同作用,碳/氧化亚硅@石墨烯材料表现出优异的循环稳定性,在0.1 C倍率下循环100圈后比容量为890 mAh/g,容量保持率为73.7%。另外,材料经历前35圈电流密度从0.1 C到5 C的逐步上升的充放电循环后恢复到0.1 C的低电流后,仍表现出886 mAh/g的可逆比容量,对应容量恢复率93.7%,表明材料的倍率性能优异。该研究提供一种提高高容量型锂/钠离子电池负极材料结构稳定性的新策略。  相似文献   

10.
通过溶剂热法合成了Co/Cu-BTC实心立方体前驱体,并以此为自牺牲模板在空气中煅烧得到双层壳结构Co_(2.7)Cu_(0.3)O_4立方体复合材料,使用X射线衍射(X-ray diffraction,XRD)仪、扫描电子显微镜(scanning electron microscope,SEM)和透射电子显微镜(transmission electron microscope,TEM)对材料进行物相形貌分析.结果表明:制备的Co_(2.7)Cu_(0.3)O_4具有双层壳立方体结构.制备的复合材料作为锂电池负极材料,表现出优异的循环稳定性能,这归因于其独特的双层壳结构有效地缩短了电子转移路程,缓解了在充放电过程中的体积膨胀,保持了结构的稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号