首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 889 毫秒
1.
Y Maruyama  O H Petersen  P Flanagan  G T Pearson 《Nature》1983,305(5931):228-232
Ca2+- and voltage-activated K+ channels are found in many electrically excitable cells and have an important role in regulating electrical activity. Recently, the large K+ channel has been found in the baso-lateral plasma membranes of salivary gland acinar cells, where it may be important in the regulation of salt transport. Using patch-clamp methods to record single-channel currents from excised fragments of baso-lateral acinar cell membranes in combination with current recordings from isolated single acinar cells and two- and three-cell clusters, we have now for the first time characterized the K+ channels quantitatively. In pig pancreatic acini there are 25-60 K+ channels per cell with a maximal single channel conductance of about 200 pS. We have quantified the relationship between internal ionized Ca2+ concentration [( Ca2+]i) membrane potential and open-state probability (p) of the K+ channel. By comparing curves obtained from excised patches relating membrane potential to p, at different levels of [Ca2+]i, with similar curves obtained from intact cells, [Ca2+]i in resting acinar cells was found to be between 10(-8) and 10(-7) M. In microelectrode experiments acetylcholine (ACh), gastrin-cholecystokinin (CCK) as well as bombesin peptides evoked Ca2+-dependent opening of the K+ conductance pathway, resulting in membrane hyperpolarization. The large K+ channel, which is under strict dual control by internal Ca2+ and voltage, may provide a crucial link between hormone-evoked increase in internal Ca2+ concentration and the resulting NaCl-rich fluid secretion.  相似文献   

2.
L W Haynes  A R Kay  K W Yau 《Nature》1986,321(6065):66-70
The plasma membrane of retinal rod outer segments contains a cyclic GMP-activated conductance which appears to be the light-sensitive conductance involved in phototransduction. Recently, it has been found that this conductance is partially blocked by Mg2+ and Ca2+ at physiological concentrations, thus possibly accounting for the absence of observable single-channel activity in excised membrane patches and for the unusually small apparent unit conductance deduced from noise measurements on intact cells. We now report that, as expected from this idea, single cGMP-activated channel activity can be detected from an excised rod membrane patch in the absence of divalent cations. The most prominent unitary current had a mean conductance of approximately 25 pS. Both individual channel openings (mean open time approximately 1 ms) and short bursts of openings (mean burst duration of about a few milliseconds) were observed. In addition, there were smaller events which probably represented other states of the conductance. The mean current increased with the third power of cGMP concentration, suggesting that there are at least three cGMP-binding sites on the channel molecule. With 0.2 mM Mg2+ in the cGMP-containing solution, a flickering block of the open channel was observed; the effect of Ca2+ was similar. The results resolve a puzzle about the light-sensitive conductance by demonstrating that it is an aqueous pore rather than a carrier.  相似文献   

3.
Vertebrate rod photoreceptors hyperpolarize when illuminated, due to the closing of cation-selective channels in the plasma membrane. The mechanism controlling the opening and closing of these channels is still unclear, however. Both 3',5'-cyclic GMP and Ca2+ ions have been proposed as intracellular messengers for coupling the light activation of the photopigment rhodopsin to channel activity and thus modulating light-sensitive conductance. We have now studied the effects of possible conductance modulators on excised 'inside-out' patches from the plasma membrane of the rod outer segment (ROS), and have found that cyclic GMP acting from the inner side of the membrane markedly increases the cationic conductance of such patches (EC50 30 microM cyclic GMP) in a reversible manner, while Ca2+ is ineffective. The cyclic GMP-induced conductance increase occurs in the absence of nucleoside triphosphates and, hence, is not mediated by protein phosphorylation, but seems rather to result from a direct action of cyclic GMP on the membrane. The effect of cyclic GMP is highly specific; cyclic AMP and 2',3'-cyclic GMP are completely ineffective when applied in millimolar concentrations. We were unable to recognize discrete current steps that might represent single-channel openings and closings modulated by cyclic GMP. Analysis of membrane current noise shows the elementary event to be 3 fA with 110 mM Na+ on both sides of the membrane at a membrane potential of -30 mV. If the initial event is assumed to be the closure of a single cyclic GMP-sensitive channel, this value corresponds to a single-channel conductance of 100 fS. It seems probable that the cyclic GMP-sensitive conductance is responsible for the generation of the rod photoresponse in vivo.  相似文献   

4.
Calcium entry through stretch-inactivated ion channels in mdx myotubes.   总被引:18,自引:0,他引:18  
A Franco  J B Lansman 《Nature》1990,344(6267):670-673
Recent advances in understanding the molecular basis of human X-linked muscular dystrophies have come from the identification of dystrophin, a cytoskeletal protein associated with the surface membrane. Although there is little or virtually no dystrophin in affected individuals, it is not known how this causes muscle degeneration. One possibility is that the membrane of dystrophic muscle is weakened and becomes leaky to Ca2+. In muscle from mdx mice, an animal model of the human disease, intracellular Ca2+ is elevated and associated with a high rate of protein degradation. The possibility that a lack of dystrophin alters the resting permeability of skeletal muscle to Ca2+ prompted us to compare Ca2(+)-permeable ionic channels in muscle cells from normal and mdx mice. We now show that recordings of single-channel activity from mdx myotubes are dominated by the presence of Ca2(+)-permeable mechano-transducing ion channels. Like similar channels in normal skeletal muscle, they are rarely open at rest, but open when the membrane is stretched by applying suction to the electrode. Other channels in mdx myotubes, however, are often open for extended periods of time at rest and close when suction is applied to the electrode. The results show a novel type of mechano-transducing ion channel in mdx myotubes that could provide a pathway for Ca2+ to leak into the cell.  相似文献   

5.
Y Maruyama  D V Gallacher  O H Petersen 《Nature》1983,302(5911):827-829
Nervous or hormonal stimulation of many exocrine glands evokes release of cellular K+ (ref. 1), as originally demonstrated in mammalian salivary glands2,3, and is associated with a marked increase in membrane conductance1,4,5. We now demonstrate directly, by using the patch-clamp technique6, the existence of a K+ channel with a large conductance localized in the baso-lateral plasma membranes of mouse and rat salivary gland acinar cells. The K+ channel has a conductance of approximately 250 pS in the presence of high K+ solutions on both sides of the membrane. Although mammalian exocrine glands are believed not to possess voltage-activated channels1,7, the probability of opening the salivary gland K+ channel was increased by membrane depolarization. The frequency of channel opening, particularly at higher membrane potentials, was increased markedly by elevating the internal ionized Ca2+ concentration, as previously shown for high-conductance K+ channels from cells of neural origin8-10. The Ca2+ and voltage-activated K+ channel explains the marked cellular K+ release that is characteristically observed when salivary glands are stimulated to secrete.  相似文献   

6.
J Vilven  R Coronado 《Nature》1988,336(6199):587-589
In many non-muscle cells, D-inositol 1,4,5-trisphosphate (InsP3) has been shown to release Ca2+ from intracellular stores, presumably from the endoplasmic reticulum. It is thought to be a ubiquitous second messenger that is produced in, and released from, the plasma membrane in response to extracellular receptor stimulation. By analogy, InsP3 in muscle cells has been postulated to open calcium channels in the sarcoplasmic reticulum (SR) membrane, which is the intracellular Ca2+ store that releases Ca2+ during muscle contraction. We report here that InsP3 may have a second site of action. We show that InsP3 opens dihydropyridine-sensitive Ca2+ channels in a vesicular preparation of rabbit skeletal muscle transverse tubules. InsP3-activated channels and channels activated by a dihydropyridine agonist in the same preparation have similar slope conductance and extrapolated reversal potential and are blocked by a dihydropyridine antagonist. This suggests that in skeletal muscle, InsP3 can modulate Ca2+ channels of transverse tubules from plasma membrane, in contrast to the previous suggestion that the functional locus of InsP3 is exclusively in the sarcoplasmic reticulum membrane.  相似文献   

7.
M Kuno  P Gardner 《Nature》1987,326(6110):301-304
Hydrolysis of membrane-associated phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)-P2) to water soluble inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) is a common response by many different kinds of cells to a wide variety of external stimuli (see refs 1 and 2 for review). Ins (1,4,5)P3 is a putative second messenger which increases intracellular Ca2+ by mobilizing internal Ca2+ stores, a hypothesis which has been substantiated by studies with chemically permeabilized cells and with isolated microsomal membrane fractions. But the possibility that Ins(1,4,5)P3 could induce in intact cells an influx of external Ca2+ through transmembrane channels, originally hypothesized by Michell in 1975, has never been directly tested. We report here single-channel recordings of an Ins(1,4,5)P3-activated conductance in excised patches of T-lymphocyte plasma membrane. The Ins(1,4,5)P3-activated transmembrane channel appears to be identical to the recently described mitogen-regulated, voltage-insensitive Ca2+ permeable channel involved in T-cell activation. We suggest that Ins(1,4,5)P3 acts as the second messenger mediating transmembrane Ca2+ influx through specific Ca2+-permeable channels in mitogen-stimulated T-cell activation.  相似文献   

8.
Single Na+ channel currents observed in cultured rat muscle cells   总被引:28,自引:0,他引:28  
F J Sigworth  E Neher 《Nature》1980,287(5781):447-449
The voltage- and time-dependent conductance of membrane Na+ channels is responsible for the propagation of action potentials in nerve and muscle cells. In voltage-step-clamp experiments on neurone preparations containing 10(4)-10(7) Na+ channels the membrane conductance shows smooth variations in time, but analysis of fluctuations and other eivdence suggest that the underlying single-channel conductance changes are stochastic, rapid transitions between 'closed' and 'open' states as seen in other channel types. We report here the first observations of currents through individual Na+ channels under physiological conditions using an improved version of the extracellular patch-clamp technique on cultured rat muscle cells. Our observations support earlier inferences about channel gating and show a single-channel conductance of approximately 18 pS.  相似文献   

9.
H Kasai  G J Augustine 《Nature》1990,348(6303):735-738
Exocrine gland cells secrete Cl(-)-rich fluid when stimulated by neurotransmitters or hormones. This is generally ascribed to a rise in cytosolic Ca2+ concentration ([Ca2+]i), which leads to activation of Ca2(+)-dependent ion channels. A precise understanding of Cl- secretion from these cells has been hampered by a lack of knowledge about the spatial distribution of the Ca2+ signal and of the Ca2(+)-dependent ion channels in the secreting epithelial cells. We have now used the whole-cell patch-clamp method and digital imaging of [Ca2+]i to examine the response of rat pancreatic acinar cells to acetylcholine. We found a polarization of [Ca2+]i elevation and ion channel activation, and suggest that this comprises a novel 'push-pull' mechanism for unidirectional Cl- secretion. This mechanism would represent a role for cytosolic Ca2+ gradients in cellular function. The cytosolic [Ca2+]i gradients and oscillations of many other cells could have similar roles.  相似文献   

10.
Yue L  Peng JB  Hediger MA  Clapham DE 《Nature》2001,410(6829):705-709
The calcium-release-activated Ca2+channel, ICRAC, is a highly Ca2+-selective ion channel that is activated on depletion of either intracellular Ca2+ levels or intracellular Ca2+ stores. The unique gating of ICRAC has made it a favourite target of investigation for new signal transduction mechanisms; however, without molecular identification of the channel protein, such studies have been inconclusive. Here we show that the protein CaT1 (ref. 4), which has six membrane-spanning domains, exhibits the unique biophysical properties of ICRAC when expressed in mammalian cells. Like ICRAC, expressed CaT1 protein is Ca2+ selective, activated by a reduction in intracellular Ca2+ concentration, and inactivated by higher intracellular concentrations of Ca2+. The channel is indistinguishable from ICRAC in the following features: sequence of selectivity to divalent cations; an anomalous mole fraction effect; whole-cell current kinetics; block by lanthanum; loss of selectivity in the absence of divalent cations; and single-channel conductance to Na+ in divalent-ion-free conditions. CaT1 is activated by both passive and active depletion of calcium stores. We propose that CaT1 comprises all or part of the ICRAC pore.  相似文献   

11.
In many cell types, receptor activation of phosphoinositidase C results in an initial release of intracellular Ca2+ stores followed by sustained Ca2+ entry across the plasma membrane. Inositol 1,4,5-trisphosphate is the mediator of the initial Ca2+ release, although its role in the mechanism underlying Ca2+ entry remains controversial. We have now used two techniques to introduce inositol phosphates into mouse lacrimal acinar cells and measure their effects on Ca2+ entry: microinjection into cells loaded with Fura-2, a fluorescent dye which allows the measurement of intracellular free calcium concentration by microspectrofluorimetry, and perfusion of patch clamp pipettes in the whole-cell configuration while monitoring the activity of Ca(2+)-activated K+ channels as an indicator of intracellular Ca2+. We report here that inositol 1,4,5-trisphosphate serves as a signal that is both necessary and sufficient for receptor activation of Ca2+ entry across the plasma membrane in these cells.  相似文献   

12.
Calcium and light adaptation in retinal rods and cones   总被引:24,自引:0,他引:24  
K Nakatani  K W Yau 《Nature》1988,334(6177):69-71
Retinal rods and cones respond to light with a membrane hyperpolarization. This hyperpolarization is mediated by an ionic conductance (the light-regulated conductance) that is kept open in darkness by cyclic GMP acting as a ligand, and which closes in the light as a result of an increase in cGMP hydrolysis triggered by illumination. Calcium ions appear to have a role in this phototransduction process: they provide negative feedback between the conductance, which is permeable to Ca2+ (refs 4, 5), and the concentration of cGMP, which is sensitive to Ca2+ (refs 6-8). This feedback down-regulates the sensitivity to light of a photoreceptor and probably contributes to the important phenomenon of light adaptation in vision. It is still not clear, however, how much of the light adaptation is actually attributable to this Ca2+ feedback. We have examined the responses of amphibian rods and cones to light with the Ca2+ feedback removed. Normally, the response of a cell to a step of light rises transiently to a peak, but rapidly relaxes to a lower level, indicative of light adaptation. When the feedback is removed, however, the relaxation of the response is completely absent; furthermore, the steady response levels at different light-step intensities are well predicted by a statistical superposition of invariant single-photon responses. We therefore conclude that the Ca2+ feedback underlies essentially all light adaptation in rods and cones.  相似文献   

13.
Decamethonium and hexamethonium block K+ channels of sarcoplasmic reticulum   总被引:5,自引:0,他引:5  
R Coronado  C Miller 《Nature》1980,288(5790):495-497
The sarcoplasmic reticulum membrane (SR) of skeletal muscle contains cation-selective channels which have been detected by isotope fluxes in fragmented SR vesicles, fluorimetric dyes and direct incorporation of SR vesicles to planar phospholipid bilayers. SR channels incorporated in bilayers have a single open-state conductance of 140 pS in 0.1 MK+ (refs 4,5). We have previously reported blockade of the SR channel by Cs+, a low-affinity blocker with a zero-voltage dissociation constant of 40 mM (ref. 6). We showed that increasing Cs+ concentrations reduced the open-channel conductance, increased the mean open time and conferred voltage dependence on the open-state conductance. Here we report on the blockade induced by the cholinergic drugs decamethonium and hexamethonium on the SR channel. Although blockade by hexamethonium is similar to that of Cs+, decamethonium blocks with a much higher affinity and induces flickering events which are probably due to the interaction of single drug molecules with the open state.  相似文献   

14.
Cancela JM  Churchill GC  Galione A 《Nature》1999,398(6722):74-76
Many hormones and neurotransmitters evoke Ca2+ release from intracellular stores, often triggering agonist-specific signatures of intracellular Ca2+ concentration. Inositol trisphosphate (InsP3) and cyclic adenosine 5'-diphosphate-ribose (cADPR) are established Ca2+-mobilizing messengers that activate Ca2+ release through intracellular InsP3 and ryanodine receptors, respectively. However, in pancreatic acinar cells, neither messenger can explain the complex pattern of Ca2+ signals triggered by the secretory hormone cholecystokinin (CCK). We show here that the Ca2+-mobilizing molecule nicotinic acid adenine dinucleotide phosphate (NAADP), an endogenous metabolite of beta-NADP, triggers a Ca2+ response that varies from short-lasting Ca2+ spikes to a complex mixture of short-lasting (1-2s) and long-lasting (0.2-1 min) Ca2+ spikes. Cells were significantly more sensitive to NAADP than to either cADPR or InsP3, whereas higher concentrations of NAADP selectively inactivated CCK-evoked Ca2+ signals in pancreatic acinar cells, indicating that NAADP may function as an intracellular messenger in mammalian cells.  相似文献   

15.
摘要: 目的 研究大黄牡丹汤组方( RPDP) 对急性胰腺炎( Acute pancreatitis,AP) 模型大鼠 胰腺腺泡细胞外分泌功 能和腺泡细胞内钙离子浓度( FI) 的影响。方法 SD 大鼠灌胃 RPDP 以制备大黄牡丹汤组方含药血清( RPDP-S) ; SD 大鼠分为假手术组和 AP 模型组,分离胰腺腺泡细胞并与 RPDP-S 共同孵育,测定腺泡细胞淀粉酶分泌水平和 FI 变化。结果 AP 模型大鼠腺泡细胞分泌淀粉酶水平较假手术组显 著升高( P < 0. 05) ,经 RPDP-S 处理的 AP 模 型大鼠腺泡细胞分泌淀粉酶水平显著降低( P < 0. 05) ; FI 随 AP 模型病程延长而升高( P < 0. 05) ,RPDP-S 可抑制 AP 模型大鼠腺泡细胞内 FI 升高( P < 0. 05) 。结论 RPDP 通能抑制 AP 大鼠胰腺腺泡细胞的外分泌功能,抑制腺 泡细胞内钙离子的升高,降低腺泡细胞内 FI 超载。  相似文献   

16.
L A Blair  V E Dionne 《Nature》1985,315(6017):329-331
A developmental change in the ionic basis of the inward current of action potentials has been observed in many excitable cells. In cultured spinal neurones of Xenopus, the timing of the development of the action parallels that seen in vivo. In vitro, as in vivo, neurones initially produce action potentials of long duration which are principally Ca-dependent; after 1 day of development the impulse is brief and primarily Na-dependent. At both ages, however, both inward components are present and the mechanism underlying shortening of the action potential is unknown. One possibility is that the outward currents change during development. Using the patch-clamp technique, we have recorded single K+-channel currents in membrane patches isolated from the cell bodies of cultured embryonic neurones. The unitary conductance of one class of K+ channels was approximately 155 pS and depolarization increased the probability of a channel being open. Neither conductance nor voltage dependence seemed to change with time in culture; in contrast, the Ca2+-sensitivity of this K+ channel increased. In younger neurones, Ca2+-sensitivity was greatly reduced or absent, whereas in more mature neurones, the activity of this channel was Ca-dependent. Such a change could account for the shortening of the action potential duration by increasing the relative contribution of outward currents.  相似文献   

17.
The increase in cytosolic [Ca2+] induced by Ca-mobilizing hormones in liver is mainly due to release of Ca from intracellular stores. For Ca to be released from internal sites a messenger must be formed at the plasma membrane which diffuses into the cytosol to signal Ca release from the intracellular organelles. One of the first actions of these hormones is to cause breakdown of the polyphosphoinositides to form soluble inositol phosphates. Some evidence for the idea that these substances could be the second messenger has been obtained in pancreatic acinar cells. Here we have found that hormone activation of hepatocytes causes rapid breakdown of phosphatidylinositol 4,5-bisphosphate [ PtdIns (4,5)P2] to form inositol trisphosphate ( InsP3 ). When applied to permeabilized hepatocytes, InsP3 releases Ca from non-mitochondrial ATP-dependent pools. This suggests that InsP3 could be the messenger linking Ca-mobilizing receptor activation to intracellular Ca release in liver.  相似文献   

18.
Stimulus-secretion coupling in exocrine glands involves Ca2+ release from intracellular stores. In endoplasmic reticulum vesicle preparations from rat exocrine pancreas, an inositol 1,4,5-trisphosphate(InsP3)-sensitive, as well as an InsP3-insensitive, Ca2+ pool has been characterized. But Ca2+ channels in the endoplasmic reticulum of rat exocrine pancreas have not been demonstrated at the level of single-channel current. We have now used the patch-clamp technique on endoplasmic reticulum vesicles fused by means of the dehydration-rehydration method. In excised patches, single Ba2(+)- and Ca2(+)-selective channels were recorded. The channel activity was markedly voltage-dependent. Caffeine increased channel open-state probability, whereas ruthenium red and Cd2+ blocked single-channel currents. Ryanodine, nifedipine and heparin had no effect on channel activity. The channel activity was not dependent on the free Ca2+ concentration, the presence of InsP3, or pH. We conclude that this calcium channel mediates Ca2+ release from an intracellular store through an InsP3-insensitive mechanism.  相似文献   

19.
M Kuno  J Goronzy  C M Weyand  P Gardner 《Nature》1986,323(6085):269-273
Cytoplasmic free Ca2+ [( Ca2+]i) appears to be an important signal for DNA synthesis in early stages of lymphocyte activation. In spite of many experimental studies which employ fluorescent Ca2+ indicator dye to demonstrate an early increase of [Ca2+]i in T-lymphocytes after stimulation with lectins, specific antigens, and monoclonal antibodies to T-lymphocyte receptors, the mechanism responsible for the rise of [Ca2+]i is unknown. We have used the extracellular patch clamp technique to investigate this mechanism. Unitary inward currents, mediated by Ca2+ or Ba2+, were recorded in the membrane of T-lymphocytes. The inward current channel was characterized by a conductance of 7 pS and extrapolated reversal potential (Erev) 110 mV positive to resting potential (Vr). While gating kinetic parameters were not affected by membrane potential changes, the probability of channel opening markedly increased upon activation of the T-lymphocyte by the mitogenic lectin, phytohaemagglutinin (PHA). PHA also evoked a cadmium-sensitive, inward Ba2+ current on whole-cell clamp. We suggest that this mitogen-regulated channel introduces Ca2+ into the cytoplasm upon activation and represents a new class of voltage-independent Ca2+ channels.  相似文献   

20.
Wang SQ  Song LS  Lakatta EG  Cheng H 《Nature》2001,410(6828):592-596
Ca2+-induced Ca2+ release is a general mechanism that most cells use to amplify Ca2+ signals. In heart cells, this mechanism is operated between voltage-gated L-type Ca2+ channels (LCCs) in the plasma membrane and Ca2+ release channels, commonly known as ryanodine receptors, in the sarcoplasmic reticulum. The Ca2+ influx through LCCs traverses a cleft of roughly 12 nm formed by the cell surface and the sarcoplasmic reticulum membrane, and activates adjacent ryanodine receptors to release Ca2+ in the form of Ca2+ sparks. Here we determine the kinetics, fidelity and stoichiometry of coupling between LCCs and ryanodine receptors. We show that the local Ca2+ signal produced by a single opening of an LCC, named a 'Ca2+ sparklet', can trigger about 4-6 ryanodine receptors to generate a Ca2+ spark. The coupling between LCCs and ryanodine receptors is stochastic, as judged by the exponential distribution of the coupling latency. The fraction of sparklets that successfully triggers a spark is less than unity and declines in a use-dependent manner. This optical analysis of single-channel communication affords a powerful means for elucidating Ca2+-signalling mechanisms at the molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号