首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
针对双螺杆水蒸气膨胀机的工作过程进行了理论研究,结果表明,在欠、过膨胀工作过程中回收功减少,且当压差相等时欠膨胀引起的做功能力下降幅度较小。通过研究内容积比、进口蒸汽热力参数和欠、过膨胀对双螺杆水蒸气膨胀机回收功和容积流量影响时发现:内容积比存在最优值,其可使膨胀机回收功最大;欠膨胀会导致膨胀功下降,膨胀机的容积流量减少。由此,提出了双螺杆膨胀机的经济性设计思路:在大中型双螺杆膨胀机的设计时宜采用欠膨胀工况,使膨胀终了压力接近且略大于出口背压,相应的内容积比小于最优内容积比。采用该思路进行设计,不仅可以得到较好的回收功,而且可使得膨胀机容积流量减少、经济性提高,为指导双螺杆膨胀机的设计提供借鉴。  相似文献   

2.
CO2跨临界循环双缸滚动活塞膨胀机的设计与分析   总被引:1,自引:0,他引:1  
二氧化碳跨临界循环需要利用膨胀机回收功以提高循环效率.在单缸滚动活塞膨胀机的基础上,提出了双缸滚动活塞膨胀机,分析了进气控制结构,进气管中余隙容积的存在会损失一部分膨胀功;分析了两缸内工作腔的吸气、膨胀、排气过程;在一定工况下,设计了双缸并联滚动活塞膨胀机;根据设计的结构参数进行了运动分析和受力计算上下两缸的活塞与滑板之间的摩擦力以及活塞上的气体力是平衡的,只需要平衡惯性力矩即可。  相似文献   

3.
运用能量守恒和(火用)分析方法,对冷中子源氦制冷逆布雷顿循环过程进行热力分析和(火用)分析.找出了系统(火用)效率和各部件(火用)损失随着压缩机压比、膨胀机等熵效率、跑冷量、换热器冷热流体平均温差变化的规律,并提出减小循环跑冷量、换热器内冷热流体温差,以及提高压缩机压比、膨胀机等熵效率、物料分配均匀度以提高循环性能和系统(火用)效率的措施.基于换热器内部冷热流体温差分布对循环性能影响的分析,设计了膨胀机预冷循环方案,该方案的(火用)效率相对于基本循环提高了24 %.  相似文献   

4.
针对HFC410A制冷空调系统开发的具有两级膨胀过程的滑片式膨胀机,其内容积比为7.66且满足HFC410A高容积膨胀比的要求,搭建了HFC410A制冷空调实验系统,并对不同工况和转速下的样机进行了实验研究。结果表明:两级滑片式膨胀机系统的性能系数(COP)最多提高11.7%,最大等熵效率为33.7%,在常规压比下膨胀机的最佳转速为1 300~1 400r/min;高压工况下摩擦损失减少,膨胀机输出功增大,有益于系统COP提升;过冷度增大,系统制冷量提高,有益于系统COP提升,但膨胀机回收功减小,相对于节流阀系统的COP提高率减小,膨胀机替换节流阀后的经济性优势降低,系统过冷度对膨胀机等熵效率和容积效率的影响较小。  相似文献   

5.
为了提高制冷系统的性能系数,减小传统节流元件对系统造成的不可逆节流损失,研究两级滑片式膨胀机在中小型制冷系统中的应用,对其进行变转速、变冷凝压力以及变过冷度等实验研究,并与数值模拟结果进行对比。结果表明:提高转速可以减小两级滑片膨胀机的泄漏量,从而提高容积效率,但会增大摩擦损失,使等熵效率和输出功先提高后降低,转速为1 400r·min-1系统性能系数提高率取得最大值;提高冷凝压力增大了膨胀机进出口压差,使容积效率降低,由于摩擦损失和泄漏损失随压比变化,输出功和等熵效率先增后减;减小过冷度更利于系统性能,过冷度平均每减小1℃回收功可提高2.2%,对过冷度较低的系统性能的提升更显著。由此可见,两级滑片膨胀机在中小型制冷系统的应用是可行的,合理调节转速、冷凝压力以及过冷度可以提高系统的整体性能。  相似文献   

6.
不同跨临界二氧化碳制冷循环的性能比较   总被引:9,自引:0,他引:9  
建立了CO2制冷循环各个部件的稳态仿真模型,对6种不同的跨临界CO2制冷循环进行了稳态仿真,衡量了吸气回热、回收膨胀功以及二级压缩等方式对系统性能的影响.结果表明,采用二级压缩并回收膨胀功可以大大提高系统的性能;只采用两级压缩而不回收膨胀功,对系统的性能并没有明显的改善;单级压缩时如果系统中带有膨胀机,采用吸气热交换器可以提高制冷量,但对性能系数(COP)值的影响不大;单级压缩不回收膨胀功时,采用吸气热交换器可以大大提高系统的制冷量和COP。  相似文献   

7.
针对滑片膨胀机工作过程中高压进口流体在经过吸气孔口时对滑片冲击而造成滑片被压入槽底且无法与气缸内壁正常接触的问题,提出了一种滑片槽底引压结构.该结构将高压流体引入滑片槽底容积腔内,通过引入槽底的高压气体力来削弱进气冲击影响,保证滑片与气缸内壁良好接触.通过理论计算,得出了槽底引压结构的最优结构参数;通过比较无引压和有引压结构的膨胀机在相同工况下的实验结果,得出了引压结构对膨胀机工作过程中动力过程和热力过程的影响机理.研究结果表明:利用槽底引压结构,膨胀机能够在跨临界CO2制冷系统中稳定运行;滑片与气缸内壁贴合情况大幅改善,膨胀机性能大幅提高,输出功率最高达到了682 W,绝热效率最高值从无引压时的23.7%增长到有引压时的49.8%.  相似文献   

8.
为提高可再生能源在冷热电联供系统中的利用率,提出一种以可逆质子交换膜燃料电池(RPEMFC)和膨胀机为主要部件的新型冷热电联供综合能源系统,通过引射器和膨胀机回收电解池氧气侧的压力能,以RPEMFC电堆的冷却回路和膨胀机出口冷气分别对外供热和制冷。为获得系统中主要设备运行参数对系统性能的影响,建立了系统的热力学模型,进而揭示了系统效率、效率、压缩机耗功、膨胀机回收功、系统制热制冷量等参数的变化规律。研究结果表明:当RPEMFC电堆以50kW的发电功率运行时,系统发电效率为56.2%,热效率为35.2%,总效率为91.4%,效率为54%,且在15~85kW的发电功率变化范围内系统能效均超过89%;系统能量效率及效率对引射器流量比及引射器工作流压力的变化较为敏感,并以影响系统发电效率为主;压缩机出口压力变化对系统能效影响不大,但压缩机出口压力增大有利于系统增加产冷量。  相似文献   

9.
对在小型氟里昂制冷系统中采用培尔顿式两相膨胀机取代节流阀进行了实验研究.基于热力学和几何分析,设计了具有紧凑、简单结构的双弧面切击式叶轮,制作了膨胀-发电机组,对膨胀机的工作性能进行了分析.在以R410A为制冷剂的小型制冷实验系统中,样机运行平稳可靠.在实验工况下膨胀机的最大单位回收功及等熵效率分别达到了2447 J/kg和32.8%.实验确定了样机运转的最佳速度区间为13100~15310r/min.在此转速下,膨胀机有最大的等熵效率并产生最大的回收功.实验样机具有结构紧凑、易加工的特点,在小型制冷系统中的应用具有很好的可行性.  相似文献   

10.
大型高速低温风洞冷量回收的方法研究   总被引:2,自引:0,他引:2  
为提高低温风洞排气冷量的综合利用和节能减排,实现大型低温风洞科学建设,分析了目前大型低温设备冷量回收利用的现状和方法;针对低温风洞高雷诺数试验运行中排气系统的工作流程和特点,对大型高速低温风洞排气冷量进行了初步计算,结合当前低温工质气化冷量回收技术方案的流程分析和国内外低温系统冷量回收利用的技术特点,对低温风洞液氮喷雾制冷后冷量回收与高效利用的方法和可行性进行了初步研究。综合考虑技术难度和投资经济性,提出了通过蓄冷设备、空分装置、固态氮制取进行冷量回收的3种主要技术途径。分析结果表明:采用蓄冷设备需要周边用冷设备支持,回收效率低;利用空分装置无需额外投资,经济性较好;固态氮制取回收效率高,硬件投资大,经济性较差。通过合理调整风洞试验流程,选取合适的技术方案,可以实现大型低温风洞的冷量回收。  相似文献   

11.
为了定量地刻画生态工业系统特征过程,建立一组基于物质和能量守恒定律的数学方程,分析了带有边界的生态工业系统与自然(工业)资源相互获得、交换、或转换的过程.同时货币化其生态经济收益,把追求生态工业系统的生态经济收益最大作为建立生态工业系统的评价指标,提出了生态工业系统的多目标数学规划模型,该模型可用于分析、设计、管理生态工业的流程网络.最后通过案例分析,表明该方法具有实际应用价值.  相似文献   

12.
涡流钻头通过反向喷嘴和高速旋转形成负压漩涡,降低井底压差,提高钻井的机械钻速。对涡流钻头降压机制进行研究。采用混合网格计算方法分析反向喷嘴的轴向倾角、径向倾角、上返流量、出口高度和旋转速度等对涡流钻头降压性能的影响,并提出涡流钻头的设计原则。结果表明:反向喷嘴下方井底钻井液回流是影响涡流钻头降压能力的主要因素。涡轮钻头设计的理论原则:轴向倾角为150°~180°、径向倾角为60°~75°、上返流量大于30%、反向喷嘴的出口高度为100~140 mm,井壁间隙应小于3 mm,尽可能地提高钻头旋转速度。  相似文献   

13.
目前在降压法开采水合物藏方面,主要侧重于对降压生产规律、水合物藏地质参数敏感性、降压法开采有效性及开发潜力等的研究,实际上在降压开采过程中,开采参数也会影响水合物藏的开采动态。根据神狐海域水合物藏现场资料,应用数值模拟的方法,进行了神狐海域2017年水合物试采试验的拟合,验证了所建地质模型的可靠性,在此基础上创新性地研究了降压幅度和降压速度对水合物藏开采动态的影响。研究结果表明:水合物未完全分解前,降压幅度越大,水合物分解速度越快,同一时刻产气速度也越快;降压速度越快,产气峰值越大且越早出现,同一时刻累产气越多。因此建议开采神狐水合物藏时降压幅度至少应为初始压力的0.5倍,并考虑实际操作工艺和设备安全性,选择较快的降压速度。  相似文献   

14.
为研究降压幅度和出砂堵塞对天然气水合物开采产能的影响,使用天然气水合物多相流数值模拟软件TOUGH+HYDRATE进行水合物降压开采模拟,通过不同情况下的水合物分解速率、产气速率、产气量和产水量分析了降压幅度和出砂堵塞对天然气水合物开采产能的影响,并通过不同情况下的储层压力、储层温度和水合物饱和度分布分析了其影响机理。数值模拟结果表明:①随着降压幅度的增大,储层中压力降低范围逐渐增大,而且压力降低幅值逐渐增大,储层与开采井之间的压力梯度越大,导致相同时间时的水合物分解速率、产气速率、产气量和产水量都逐渐增大;降压幅度的增大对短期开采的累积产气量有明显提高,而对长期开采的产气量影响不大,而降压幅度的增大可能导致出砂堵塞以及水合物二次生成,因此实际开采时应设定一个合理的降压幅度并辅助升温等其它措施;②随着出砂堵塞的加剧,井周附近的渗透率逐渐降低,储层中压力降低范围逐渐减小,而且压力降低幅值逐渐减小,储层与开采井之间的压力梯度越小,另外井周渗透率的降低还会导致气体的流速的降低,从而导致相同时间时的水合物分解速率、产气速率、产气量和产水量逐渐减小;出砂堵塞会对产气量持续产生影响,导致产气量随时间成比例减少,因此实际开采时应进行储层改良减轻出砂问题或采取防砂措施避免出砂堵塞。  相似文献   

15.
采用数值模拟方法,将降压开采分为完全分解区、分解区和未分解区进行数值模拟研究,建立了天然气水合物多相(气、水、水合物)流分解能量守恒模型、分解反应动力学模型.在此基础上,建立了二维数学模型以分析产气性能影响因素.模拟计算结果表明,出口压力越大,累积产气量越小;边界传热越快,分解越快;绝对渗透率对累积产气量和产气率影响较小.所做工作为进一步开展室内模拟实验和工程应用研究提供了技术依据.  相似文献   

16.
本通过对降压前、后排球的实验研究与理论分析,阐述降压后排球的运动学特征.为降压后排球的运动技术提供理论依据。  相似文献   

17.
林星宇  李凯  孔亮 《科学技术与工程》2020,20(27):11233-11239
深海能源土是指含新型战略性新能源-天然气水合物的海底沉积物。降压开采天然气水合物是一种相对经济、高效的方式,开采中水合物储层分解区域的确定与能源土斜坡稳定性分析是确保天然气水合物安全有效开采的前提之一。本文归纳了水合物降压开采的基本方程,通过自主编写USDFLD子程序,在ABAQUS中实现了降压开采条件下海底斜坡水合物储层分解区域的判断,模拟了水合物饱和度以及相关物性参数的变化情况。结合一实际海底能源土斜坡,完成了降压开采条件下能源土斜坡水合物储层分解区域、有效应力及变形场的计算,并结合有限元强度折减法对深海能源土斜坡降压开采的实际工况进行了数值模拟。结果表明开采前与开采后的安全系数变化不大,单井降压开采对斜坡的稳定性影响不明显。  相似文献   

18.
生物催化铁锰离子及其氧化物的循环转化   总被引:1,自引:1,他引:0  
铁锰离子或铁锰氧化物可作为电子供体或受体被微生物催化氧化或还原,这种微生物催化作用是自然界金属循环、矿物形成与迁移的重要推动力。微生物的呼吸作用或特异性酶使铁锰氧化沉淀或还原浸出,同时其它有价金属共沉淀或浸出,所以铁锰及其氧化物的微生物循环转化作用是资源环境领域生物技术的重要的共性基础。基于对微生物催化铁锰氧化还原过程的机理探索,对自然界固有的缓慢生物过程进行人工强化、提取富集有价金属、消除环境金属污染,最终建立基于生物技术的循环经济和生态工业模式。  相似文献   

19.
改变油藏润湿性和降低油水界面张力是解决低渗/特低渗油田注水压力高问题的有效方法。而室内驱替实验时,表面活性剂浓度不仅影响油水界面张力,还会影响岩石表面润湿性能,无法准确评价表面活性剂的润湿性能对降压效果的影响。格子Boltzmann方法通过控制流体和固体间作用参数能够独立控制界面张力大小,并能够模拟任意接触角变化。因此,基于格子Boltzmann方法,应用二维平板模型,考虑粗糙表面,设置微观梯形结构,研究了毛管数、邦德数及黏度比等不同无量纲数条件下润湿性改变对降压率的影响。结果表明,毛管数越小,邦德数越大、黏度比越大、接触角越小,降压率越高、降压效果越明显;接触角存在一个最佳范围,超过此范围继续降低接触角,降压效果不明显;对于多孔介质,改变润湿性对降压率影响比单通道更加明显。  相似文献   

20.
为提高CO2跨临界循环的效率,降低系统的节流损失,用CO2膨胀机代替系统中的节流阀,并对其回收膨胀功进行了研究,设计和开发了两代CO2滚动活塞膨胀机样机,给出了两代CO2膨胀机的特点,同时进行了试验对比.试验测试结果表明滚动活塞形式的膨胀机在超临界和两相区运行是可行的.第二代膨胀机明显优于第一代膨胀机,可见采取的降低泄漏、减小摩擦等措施非常有效.膨胀机在CO2跨临界循环中运行,存在最佳转速,使膨胀机的输出功率达到最大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号