首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
以榛子壳为原料、氯化锌为活化剂制备活性炭,并以苯酚为被吸附质,探究活性炭对苯酚的吸附性能.通过设计3因素3水平的正交实验,获得了最佳工艺条件.研究了在不同的吸附时间、pH值、温度等条件下活性炭对苯酚的吸附效果,并对吸附过程进行了动力学和热力学研究.结果表明:活性炭对苯酚的吸附过程符合伪二级吸附动力学方程,低温和酸性条件下更有利于吸附;吸附过程符合Langmuir等温吸附模型,ΔG0和ΔH0,表明该吸附过程是自发的放热过程.  相似文献   

2.
为探讨水中粉末活性炭(PAC)吸附亚氯酸盐(ClO2-)的速率控制机制,在常规水处理的pH及温度下,通过烧杯搅拌实验对ClO2-在PAC上的等温吸附特性及吸附机理进行研究。用Langmuir和Freundlich模型对吸附等温线进行拟合,考察PAC对ClO2-吸附的性质及热力学行为;用伪一级、伪二级动力学模型以及颗粒内扩散、液膜扩散模型对吸附动力学数据进行分析,探讨该吸附过程的机理及速率控制机制。结果表明:在常规水处理条件下PAC对ClO2-的吸附是自发、吸热的化学吸附过程,适宜吸附的pH为6,吸附的表观活化能约为53 kJ/mol;平衡吸附量随温度和ClO2-初始质量浓度升高而增加,与Langmuir等温吸附模型和伪一级动力学模型相比,吸附等温线更符合Freundlich等温吸附规律,吸附动力学更符合伪二级动力学规律。研究结果表明了化学吸附反应是PAC吸附ClO2-速率的主要控制机制。  相似文献   

3.
活性炭吸附苯酚及其微波辐照再生效果   总被引:3,自引:0,他引:3  
考察预处理后颗粒活性炭(GAC)对苯酚的吸附行为,探讨微波辐照再生吸附苯酚活性炭的机理,确定GAC达到吸附平衡的时间及吸附过程符合的等温吸附模型.实验结果表明:3 h后GAC吸附基本达到平衡,吸附过程符合Freundlich等温吸附模型,最大平衡吸附量为143.7 mg/g.对吸附饱和苯酚GAC进行微波辐照再生研究,实验结果表明:最佳的再生条件为微波功率520 W,再生时间15 min,GAC用量为6 g,此时GAC再生效率为86.5%.  相似文献   

4.
以荼为唯一碳源,驯化分离出高效荼降解菌NPA-5,将NPA-5负载于活性炭上,制备出生物活性炭.研究生物活性炭对荼的吸附特征、生物吸附动力学及其对焦化废水中荼的吸附降解机制.结果表明,活性炭对荼的等温吸附符合Langmuir和Freundlich等温吸附模型;负载NPA-5的生物活性炭能较快地降解废水中的荼,降解率达99.3%;生物活性炭对荼的降解符合一级动力学模型.  相似文献   

5.
采用活化法制备土霉素菌渣活性炭(菌渣炭),并用于处理低浓度含铬废水。经过组分测定可以看出土霉素菌渣含有较高的挥发分,灰分含量较低;元素分析中C、O元素的含量较高,表明土霉素菌渣含有大量的有机物和菌体蛋白;BET测得菌渣炭的比表面积、孔容和孔径都较大,通过扫描电镜可观察出菌渣炭具有较多的微孔和中孔,有利于对Cr(VI)定的吸附。通过单因素实验确定在初始Cr(VI)浓度为2mg/L时菌渣炭对Cr(VI)的最佳吸附pH、吸附剂投加量、吸附时间分别为4、0.5g/L、 50min, Cr(VI)的最高去除率为96.2%。热力学和动力学分析结果表明菌渣炭对Cr(VI)的吸附符合Freundlich等温吸附模型和准二级动力学模型。菌渣炭的饱和吸附量为17.93 mg/g,对Cr(VI)的吸附速率与吸附剂上未被占据的吸附位点的平方成正比。用1mol/L的HCl对菌渣炭进行洗脱再生,经过4次循环实验Cr(VI)的去除率为77.1%,剩余溶液中Cr(VI)浓度为0.459 mg/L,满足污水综合排放标准0.5 mg/L,菌渣炭的饱和吸附量为2.018 mg/g,表明菌渣炭的再生性能良好。  相似文献   

6.
纤蛇纹石吸附Cu(Ⅱ)的动力学及热力学研究   总被引:1,自引:0,他引:1  
研究纤蛇纹石对铜离子的吸附行为,探讨初始溶液pH、温度和铜离子初始浓度对吸附动力学的影响,进行吸附等温线的测定和热力学计算.研究结果表明:当温度为25~60℃,pH为2~4,铜离子初始浓度为10~100mmol/L时,Cu(Ⅱ)的吸附动力学数据均符合准二级反应动力学模型;吸附量随反应温度、初始pH和溶液初始浓度的增加而增加;等温吸附曲线符合Langmuir等温吸附模型,吸附过程以单层吸附为主;反应的吉布斯自由能为负值,焓变为20.427 kJ/mol,熵变为109.424 J/(mol·K),说明吸附是一个自发进行的物理吸附过程.  相似文献   

7.
K_2CO_3-HNO_3法制备活性炭及其对苯酚吸附动力学研究   总被引:1,自引:0,他引:1  
活性炭因其发达的孔结构而常用于水中有机物的吸附脱除.利用农作废弃物玉米秸秆为原料,K2CO3-HNO3为活化剂制备低成本、高比表面积的活性炭,并研究该活性炭对水中苯酚的吸附特性,通过测定时间和溶液温度对吸附的影响,探讨了吸附过程的动力学及吸附机制;采用扫描电镜观测活性炭表面形貌,采用低温液氮吸附测定数据,以BET方程对活性炭孔结构进行计算表征.结果表明,该活性炭表面孔状结构明显,其比表面积和孔容积发达,分别达到1 652.7 m2/g和1.28 cm3/g,明显优于K2CO3法活性炭和商业活性炭;K2CO3-HNO3法活性炭对苯酚的吸附在50 min左右基本达到平衡,但温度升高对其不利,说明该吸附过程属于放热反应;吸附符合准二级动力学方程,说明整个过程包含扩散、吸附多方面;Freundlich模型与实验数据有较好的线性相关性,说明苯酚属于多分子层吸附.  相似文献   

8.
钠型丝光沸石吸附水溶液中铜离子平衡及动力学研究   总被引:8,自引:0,他引:8  
研究了沸石吸附水溶液中铜离子时多种因素(时间、吸附温度、初始浓度、pH值、吸附剂量、离子强度等)对吸附过程的影响。实验结果表明,沸石对铜离子的吸附过程能很好地遵循准二级动力学模型,其相关性系数均达到0.999,且吸附速率常数k2随吸附过程的温度升高而增加。其相应的吸附过程的活化能Ea为11.256kJmol/L。Langmuir、Freundlich及Dubinin-Radushkevich(D-R)等方程可较好地拟合热力学数据。吸附过程的热力学参数!G°<0、!H°>0,表明水溶液中铜离子在沸石上的吸附是一个自发的、吸热的过程。D-R等温方程拟合计算结果反映该吸附过程中主要为离子交换过程。沸石对铜离子的单位吸附量随初始浓度的升高而增大;在pH2~6间随pH升高而增加;增大吸附剂投加量有利于提高吸附效率,向溶液中加入一定量的NaNO3则会使沸石对铜离子的吸附能力降低。  相似文献   

9.
染色废水对环境具有巨大危害。利用青霉素菌渣为原料制备氮掺杂活性炭,研究其对水中亚甲基蓝的吸附机理,并用响应曲面法优化活性炭对水中亚甲基蓝的吸附机理。研究结果表明,所制备的活性炭孔隙结构发达,比表面积达到了1 640.39 m2/g,活性炭表面含羟基等官能团。亚甲基蓝吸附过程符合伪二级动力学模型和Langmuir等温吸附模型。建立的响应面模型合理可靠,最佳吸附条件为吸附时间138 min、吸附温度30℃、pH为8。在此条件下,活性炭对亚甲基蓝的吸附量达到了332.90 mg/g,与模型理论预测值335.76 mg/g基本吻合。  相似文献   

10.
改性活性炭对镉的吸附研究   总被引:7,自引:0,他引:7  
研究镉在表面氧化改性的颗粒活性炭上的吸附行为.考察离子强度、pH值、温度和镉初始浓度对吸附的影响,并进行相应的动力学与热力学计算.结果表明,实验范围内,活性炭对镉的吸附在pH=2~7范围内与pH值呈正相关,增加离子强度对吸附有一定的阻碍作用;吸附动态曲线符合二级动力学模型;活性炭与镉之间的标准吸附热约为-25.29 kJ·mol-1,整个温度范围内吸附是自发的放热过程.  相似文献   

11.
活性炭对挥发酚的吸附特性   总被引:1,自引:0,他引:1  
 利用活性炭对挥发酚进行吸附实验,通过测定挥发酚在水中的浓度变化情况,考查了在不同吸附剂用量、pH值、吸附时间、温度、起始浓度条件下,活性炭对挥发酚去除效果的影响。进而分析活性炭对挥发酚的吸附特性,为含挥发酚废水处理方案的设计提供参数。结果表明,在12℃下,吸附时间20min、活性炭的用量为0.7g/50mL,在不改变水样pH值条件下,挥发酚的去除率最高达96.04%,而且低起始浓度下挥发酚的去除效果明显高于高浓度下的去除效果。活性炭吸附挥发酚的等温线符合Freundlich方程式。  相似文献   

12.
首先确定了水溶液中苯酚在活性炭上的吸附等温式,然后根据平衡接近率与时间的关系,应用Paterson热传导近似公式,用计算机解超越方程,得到了苯酚在活性炭粒内的有效扩散系数。  相似文献   

13.
颗粒改性活性氧化铝吸附除氟动力学和热力学的研究   总被引:1,自引:0,他引:1  
通过对硫酸铁改性活性氧化铝颗粒(FMAA)吸附除氟的静态实验研究,得到其吸附动力学和吸附热力学描述,并进一步探讨了吸附机理和速率控制步骤。用拟一阶动力学模型、拟二阶动力学模型、Elovich模型、Boyd模型对吸附动力学实验数据进行拟合,发现所有动力学数据均符合拟二阶动力学模型,且Boyd模型拟合结果支持颗粒内扩散为动力学控制步骤的结论。采用Langmuir、Freundlich和Sips吸附等温线模型对数据进行拟合,结果显示吸附平衡数据与Sips模型相关性好,且Sips常数γ=0.712,说明FMAA上的氟离子是不均一的单层吸附。由范特霍夫方程求得吸附焓变ΔH0=30.39 kJ/mol,且动力学实验数据与Elovich方程相关性好,说明FMAA对氟离子的吸附主要为化学吸附。  相似文献   

14.
聚丙烯腈、N,N-二甲基甲酰胺和钛酸四丁脂水解溶胶的混合液通过静电纺丝、预氧化、炭化、活化制备TiO2/活性炭复合纳米纤维膜.基于静态吸附试验,考察了不同TiO2/活性炭复合纳米纤维膜投加量、亚甲基蓝初始质量浓度、温度、pH值条件下,TiO2/活性炭复合纳米纤维膜对亚甲基蓝的吸附性能,并用Langmuir等温吸附方程、Freundlich等温吸附方程、准一级动力学方程,准二级动力学方程、颗粒内扩散方程进行了拟合,结果表明,Freundlich经验公式、准二级动力学方程能较好地描述TiO2/活性炭复合纳米纤维膜对亚甲基蓝的吸附行为.研究表明,吸附量随温度升高而增加,吸附效率受颗粒内扩散影响.无论是紫外光还是太阳光照射,TiO2/活性炭复合纳米纤维膜都具有很好的光催化再生性能.  相似文献   

15.
采用中药材废渣基活性炭处理含Cr(VI)废水,考察了pH、离子浓度、活性炭投加量、吸附时间对其吸附性能的影响,并对其吸附过程进行初步研究。结果表明,在pH=2、离子浓度80mg/L、活性炭投加量0.1g以及吸附时间为1h下吸附性能最佳。活性炭对Cr(VI)的吸附等温线符合Freundlich模型,采用准二级动力学模型能更好的描述活性炭对Cr(VI)吸附动力学过程。  相似文献   

16.
采用活性炭吸附预处理后的莠去津农药废水中的有机物,研究了活性炭种类、溶液pH值、盐含量对吸附的影响,测定了吸附等温线,并探讨了活性炭的再生性能.结果发现:pH值小于3时粉状木质活性炭对农药废水的吸附效果最好;废水中的盐含量越高,越有利于吸附;Freundlich模型比Langmuir模型能更好地拟合吸附等温线,pH值为3时的最大吸附量为250 mg/g.碱液可以将吸附在活性炭上的有机物解吸下来,再生后活性炭的吸附量可达到新鲜活性炭的98%以上.  相似文献   

17.
在测定4种颗粒状活性炭常规性能指标(比表面积、亚甲基兰值、碘值、苯酚值)的基础上,测定了4种活性炭对水中微量内分泌干扰物邻苯二甲酸二丁酯(DBP)的吸附等温线以及吸附效果,同时对活性炭的电化学再生进行了研究.结果表明:35℃时,4种活性炭均能有效地去除DBP,去除率高达90%以上;煤质1.0、煤质1.5、果壳和椰壳饱和吸附量分别为52.52 mg/g、29.90 mg/g、159.3 mg/g和147.2 mg/g.根据Langmuir和Freundlich吸附模型对DBP吸附等温线进行拟合,更符合Freundlich模型.活性炭对DBP吸附量的大小与其比表面积、亚甲基兰吸附量、碘值、苯酚值存在一定的关系,为选择合适的活性炭来处理水中微量邻苯二甲酸类化合物提供参考依据.  相似文献   

18.
活性炭处理含氰废水机理研究:吸附和催化氧化机理   总被引:2,自引:0,他引:2  
通过实验探讨了含氰废水在活性炭表面上的吸附和氧化历程,提出了以化学吸附为特征和在氰化物的氧化过程中铜化合物起催化剂作用的观点.实验研究了金属离子、溶液pH值及溶解氧对活性炭处理氰化物容量的影响,分别用热力学和动力学实验来计算吸附热和吸附活化能,从而提出吸附机理和催化氧化反应机理.结果指出,氰化物在活性炭上的催化氧化反应与活性炭的表面含氧基因、催化剂Cu2+和吸附的溶解氧有关.这一机理对实际处理合氰电镀废水有指导意义.  相似文献   

19.
研究以活性炭吸附SO2为主要研究对象,对活性炭固定床脱硫过程的机理和脱硫的动力学特征进行了分析研究,并以Freundlich吸附等温线为模型,计算出了反应速率常数和反应级数,为其工业应用提供了技术参考.  相似文献   

20.
以鸡内金(ECGG)为原料,在氩气保护下,先在450℃下高温炭化,后添加KOH作为活化剂,分别选取800、900、1 000℃作为活化温度,制备出3种类型活性炭(ECGG-800、EGGG-900和EGGG-1000).对3种类型活性炭表征分析,并选取ECGG-900做酸性品红和亚甲基蓝的吸附饱和,进行2种最常用的吸附模型Freundlich和Langmuir的拟合.结果表明,用Freundlich吸附等温线模型能解释鸡内金活性炭对酸性染料的吸附;而对于碱性染料的吸附,则Langmuir吸附等温线模型更有说服力;且该活性炭对酸性品红、亚甲基蓝的吸附量分别可达1.682 g/g和2.045 g/g.随着吸附时间的延长,3种活性炭对染料的去除率也随即增大.鸡内金活性炭对处理酸性和碱性染料效果均佳,是一种具有发展潜力的吸附剂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号