首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 268 毫秒
1.
针对目前PC箱梁墩顶块在施工过程中由于水化热导致出现裂缝现象,结合实际工程,综合考虑混凝土密度,比热容,热传导系数的温度时变效应,建立水化热温度冲击模型,采用单元生死技术和子模型技术对PC箱梁墩顶块水化热温度场进行空间数值仿真。经与实测数据对比说明:水化热温度冲击模型准确、实用;腹板与底板、腹板与顶板、腹板与横隔板交合处混凝土浇筑量较大,产生大量水化热,导致浇注温度很高;并向表面依次降低,由里及外温度梯度分布宽度逐渐小;采用单元生死技术能有效模拟混凝土箱梁分层浇筑或多层浇筑;子模型技术适合PC箱梁墩顶块局部精细分析,可解决单元划分所导致的复杂结构水化热热量传导梯度过大及阶跃现象。该成果对工程实际具有一定的参考价值。  相似文献   

2.
混凝土箱梁水化热温度徐变应变分析   总被引:3,自引:0,他引:3  
针对桥梁设计中混凝土箱梁水化热温度应变难以精确分析的现象,基于预制梁场混凝土箱梁水化热温度应变现场试验,采用初应变增量有限元法建立混凝土箱梁水化热温度应变的弹性徐变理论隐式解法数值模型,分析实测水化热应变、温度徐变应变及温度弹性应变三者之间的差异,研究混凝土箱梁水化热温度应变受徐变影响的规律。研究结果表明:拆模后箱梁顶板、底板水化热温度应变均为压应变且算术平均值基本一致;混凝土箱梁顶板水化热温度应变变化速率略小于底板水化热温度应变变化速率;徐变对混凝土箱梁水化热温度应力应变影响非常大,实际应变仅约为温度弹性应变的一半,因此,早龄期混凝土结构温度弹性应力减半更符合实际情况;混凝土箱梁水化热温度应变实测数据略大于温度徐变应变计算值,说明本文数值模型可准确有效模拟箱梁水化热温度应变真实状态、有助于桥梁分析设计。  相似文献   

3.
箱梁大体积混凝土冬季施工水化热效应研究   总被引:1,自引:0,他引:1  
针对连续箱梁0#、1#块大体积混凝土因浇筑时水化热温度应力导致的早期开裂现象,基于遵循能量守恒定律的热传导基本理论,利用有限元软件MidasFEA的水化热分析模块,分析了在墩顶3m厚横隔板内有冷却水管作用时,冬季大体积混凝土箱梁"二次浇筑"的早期水化热温度场和应力场.计算表明,水化热引起第一次浇筑混凝土横隔板的棱角处及接近上下层交界面附近的早期温度应力是不容忽视的.根据研究结论,提出了一些控制水化热温度效应的合理建议,可供同类工程参考.  相似文献   

4.
为研究大跨径连续刚构桥箱梁零号块高强混凝土水化热温度场变化规律,以及采用现有方法计算所得理论值与实测值的对比。以鄂尔多斯市东康路连续刚构桥主桥为依托工程,对布置温度测点的零号块水化热数据进行采集,并根据《大体积混凝土施工规范》(GB50496-2009)建立MIDAS/FEA有限元数值模型。根据所采数据进行分析,得到该零号块水化热温度场效应规律,并与计算结果进行对比分析。由本实例实测数据与理论数据对比可得,测点最高温度与实测值相差可达26℃,达到最高温度所用时间相差可达25 h。因此,桥梁所用高强混凝土与承台、大坝等所用普通混凝土的热力学性能差别较大,连续刚构桥箱梁零号块不能完全参照《大体积混凝土施工规范》(GB50496-2009)来处理。  相似文献   

5.
混凝土箱梁层水化热场时程分析与评价模型   总被引:3,自引:0,他引:3  
针对混凝土箱梁墩顶块在施工浇筑过程中的早期开裂现象,基于最小目标原理,建立了混凝土箱梁水化热评价模型;在水化绝热温升模型的基础上,采用大型通用软件ANSYS,对正常浇筑模式下和3层浇筑模式下混凝土箱梁墩顶块水化热温度场进行三维数值仿真,得到水化热场温度峰值和温差峰值时程曲线,并将3层浇筑与正常浇筑模式进行了对比分析以及优化评价。研究结果表明:3层浇筑方式能够改善混凝土水化热温度峰值,但对缩小温差峰值不明显;热场评价模型能够准确地反映浇筑方式的合理性,评判其温度峰值与温差值的差异性。  相似文献   

6.
针对高墩混凝土箱梁墩顶块水化热温度场分布状况,考虑了风速的影响,建立了时变对流热传导模式,利用ANSYS分别对时变对流换热系数和稳定对流换热系数下混凝土箱梁墩顶块水化热温度场进行了分析,总结了时变对流模式下混凝土箱梁墩顶块水化热温度场的分布规律,并与实测值进行了对比。研究结果表明:时变对流计算模式适合计算高墩混凝土箱梁墩顶块的水化热温度场;混凝土箱梁墩顶块水化热温度分布以腹板、顶板、底板与横隔板的交合部分为球心呈层状向外逐渐减小;随着时间的延伸,水化热温度分布形状相似,相应区域内温度值降低;时变对流换热系数下水化热温度峰值出现时间约为56 h,稳定对流换热系数下水化热温度峰值出现时间约为80h;风速对各测点的水化热温度峰值及其发生的时间影响较大,增大风速可降低水化热温度峰值,缩减温度峰值出现的时间。  相似文献   

7.
对连续刚构铁路桥箱梁温度场及桥梁线形进行长期、连续监测,通过主梁跨中下挠的理论与实测对比揭示了连续刚构铁路桥收缩徐变效应。对比了国内外常用收缩徐变估算模型,选择CEB-FIP徐变模型对黄河特大连续刚构桥进行了有限元分析。采用实测温度数据,以箱梁内测温度、外侧温度、顶底板温度梯度、左右侧温度梯度作为箱梁温度场的评判指标,对箱梁1年内的四季温度场分布进行分析。在基于相同温度场的条件下,通过理论值与实测值对比,发现分析成果与实测结果较吻合,说明混凝土的收缩徐变是引起连续刚构铁路桥跨中下挠的主要原因,对比结果还说明通过改善箱梁顶底板应力差能够改善收缩徐变长期效应。  相似文献   

8.
箱梁水化热温度场时效模式及时变应力场   总被引:7,自引:2,他引:5  
针对目前混凝土箱梁0#块在施工控制过程中出现早期裂缝现象,综合考虑混凝土材料特性、混凝土早期抗拉强度、混凝土水化热和对流边界条件的时变效应以及浇注时间的滞后效应,基于三维非稳定温度场理论,给出混凝土水化热温度场时效分析模式.采用大型通用软件对混凝土箱梁0#块水化热温度场和应力场进行三维数值仿真,得到水化热温度场和应力场时程关系曲线,总结了温度场和应力场时变效应规律.数值仿真与实测数据对比结果表明,水化热温度场时效模式更能准确地模拟工程实际.  相似文献   

9.
该文依托广西龙门大桥锚碇填芯超大体积海工混凝土结构(58606m3),对连续浇筑期混凝土的温度梯度演化规律开展在线监测和真实温度场、应力分析,对混凝土结构的温控防裂具有重要意义。该文首先研发了温度梯度在线监测系统,可实现在线实时采集混凝土温度梯度变化数据,反馈实际温度与允许阈值间偏差功能,可为及时预警和精准温控提供依据;其次通过构建真实温度场并计算温度应力,揭示了在连续浇筑条件下超大混凝土结构的真实温度梯度演化规律,提出了温度开裂控制梯度指标。工程实践表明:温度梯度在线监测系统能保证现场精准动态温控方案较好地实施,从而有效控制开裂风险。研究成果可供同类工程温控防裂设计和施工参考。  相似文献   

10.
为了研究混凝土箱梁墩顶块翼缘板早期裂缝机理,采用热-力耦合方法,建立了混凝土箱梁水化热温效剪力滞耦合模型,提出了广义剪力滞概念,以混合网格对混凝土箱梁墩顶块进行分层网分。计算了剪力滞随水化热温度荷载变化的全过程,分析了水化热温效剪力滞时变效应规律,并将计算值与试验数据进行了比较。结果表明:水化热温度所产生的剪力滞效应为负剪力滞,其程度与水化热温差峰值相关,降低水化热温差峰值,可有效降低水化热负剪力滞效应;翼缘板边缘拉应力峰值出现的时间滞后于温度峰值时间约40h。因此,水化热—力耦合模型能有效地模拟混凝土箱梁墩顶块水化热剪力滞效应,估计翼缘板拉应力峰值出现的时间,及时采取措施进行控制,防止开裂。  相似文献   

11.
那吉枢纽工程2号泄水闸底板于2006年8月份开始浇筑,外界气温比较高,温控措施显得极为重要。文中结合实际收集资料,利用有限元程序,对泄水闸底板温度应力进行计算,分析了泄水闸底板的温度场和应力场,结果表明,原施工方案是可行的。  相似文献   

12.
大体积承台混凝土水化热分析及温控措施   总被引:1,自引:0,他引:1  
由于水泥的水化热作用,大体积混凝土浇筑过程中将产生大量的水化热.混凝土浇筑初期,外部混凝土收缩受到内部混凝土约束产生拉应力,当其超过材料的抗拉强度时产生裂缝.文章首先介绍混凝土水化热产生的机理和水化热发生的过程,然后通过工程实例详细介绍了大体积混凝土浇筑过程中的水化热影响及如何降低混凝土内部的绝热温升,施工时应采取温控防裂措施,减小混凝土的水化热和内外温差.  相似文献   

13.
T构桥墩顶块具有混凝土体积大、应力状态复杂等特点,有效控制混凝土浇筑时的水化热效应是保障全桥工程质量的关键。依托渝黔高铁石梁河特大桥主桥墩顶块混凝土施工,采用数值仿真和现场监测的方法,研究一次性浇筑方案的可行性,对比不同措施对混凝土水化热效应的控制效果,提出墩顶块混凝土浇筑优化方案并应用于实桥施工。提出石梁河大桥墩顶块优化浇筑方案。研究结果表明:原定一次性浇筑方案由于混凝土浇筑体积过大、所采取的降温散热措施很少,导致混凝土水化热温度峰值、最大内表温差和名义拉应力均大幅超出规范限值,不具可行性;分层浇筑、埋设冷却水管是缓解混凝土整体水化热效应的关键措施,调整混凝土入模温度是控制水化热温度峰值和内表温差的重要措施;表面热交换系数与混凝土养护覆盖措施密切相关,对混凝土内表温差有显著影响;所提出的石梁河大桥墩顶块优化浇筑方案为分两层浇筑+底板埋设冷却水管+混凝土入模温度调整至15℃+混凝土表面采用6 mm厚钢板+2 cm厚聚乙烯泡沫覆盖,采用该方案进行现场施工,实测混凝土水化热温度峰值为58℃,最大内表温差22.74℃,最大表面名义拉应力为1.76 MPa,均小于规范限值,说明混凝土水化热效应...  相似文献   

14.
为分析混凝土水化热和三向预应力钢筋张拉顺序对斜拉桥预应力箱梁施工裂缝的影响,建立了嘉陵江大桥空间有限元实体模型,通过模拟现场实测温度场和选取3种不同的预应力钢筋张拉工序,分析水化热和预应力钢筋张拉顺序对箱梁顶板、底板和腹板受力特性的影响,并对比分析结果和实际裂缝情况。结果表明:水化热是嘉陵江大桥箱梁底板和腹板产生施工裂缝的一个重要原因;但是单纯的水化热不能使腹板产生裂缝。横向和竖向预应力钢筋滞后纵向1~2个节段张拉的施工工艺使得底板施工前期拉应力增长较快;且使得腹板在施工过程中拉应力变大。因而,预应力钢筋张拉顺序成为嘉陵江大桥箱梁底板和腹板产生施工裂缝的另一个重要原因,但是预应力钢筋张拉顺序对箱梁最终状态应力影响很小。  相似文献   

15.
大跨预应力混凝土箱梁桥施工期腹板开裂研究   总被引:2,自引:0,他引:2  
为探求一座大跨预应力混凝土箱梁桥施工早期腹板开裂原因,在实桥上进行了水化热测试.基于施工现场同条件养护混凝土早龄期力学性能发展规律的实测结果,应用有限元方法按照实际施工过程建立时变模型,对箱梁混凝土水化热所致的温度场和应力场进行分析,并对预应力张拉进行了模拟.结果表明:水化热计算结果与实测值吻合良好,过高的水化热是引起该桥箱梁腹板早期开裂的主要原因之一,而预应力张拉时结构应力处于较低的水平.  相似文献   

16.
基于对苏通大桥辅助航道桥运营期温度数据的分析以及对不同尺寸箱梁的温度场的仿真计算,研究大尺寸箱梁温度场的分布特点及其影响,提出腹板温度梯度和底板温度梯度的修正方法.研究结果表明:大尺寸混凝土箱梁竖向温度分布特点为腹板温度整体高于梗腋部位温度,而梗腋部位的温度又整体高于底板温度;计算大尺寸混凝土箱梁的温度效应时,由腹板温度和底板温度引起的竖向挠度曲率误差最高可达33.3%.腹板沿壁厚方向最大温度梯度可达9℃,当上部结构上下行分幅布置时,外侧腹板和内侧腹板有不可忽略的横向温差.  相似文献   

17.
文章以混凝土连续刚构箱梁桥为研究对象,应用热成像仪实地观测日照温度荷载作用下混凝土箱梁桥中的温度场日变化规律,并分析其最大竖向升、降温温度梯度荷载分布形式及大小;采用ANSYS软件数值模拟分析温度梯度荷载在结构中产生的效应,同时与现行规范进行分析对比。分析结果表明:日照温度荷载在混凝土箱梁桥中产生的竖向升、降温温度梯度场呈曲线型分布,并在箱梁的底板存在温差现象;温度温梯度荷载在混凝土箱梁的腹板、底板中均有应力产生;观测分析所得的温度梯度荷载与现行规范规定的温度梯度荷载在结构中的分布形式、数值大小及其在桥梁中产生的效应方面差异较大。  相似文献   

18.
通过温控计算,采用低水化热水泥和分块分层浇筑方法,并适当埋设冷却水管,降低混凝土入模温度,采用实时温度跟踪监测,从而降低了砼温度应力和提高砼本身抗拉性能,确保了地下室底板大体积砼施工质量.  相似文献   

19.
温度效应是引起混凝土桥梁裂缝产生的重要因素之一。为研究不同工况下混凝土梁桥的温度效应,通过有限元软件ADINA对梁体在浇筑水化热、日照温差两种工况下的温度场进行模拟,结合某预应力混凝土梁桥实桥跟踪试验温度实测值进行对比分析,并计算出温度应力对结构的影响。结果表明:有限元计算结果与现场实测结果较为一致。混凝土T梁浇筑时,水化热温度先剧烈上升,约7~9 h达到峰值,峰值温度约60℃,然后快速下降趋于平稳,早期水化热应力小于混凝土早期抗拉强度;采用《公路桥涵设计通用规范》中温度梯度计算日照温差应力分布规律与实测值基本一致,腹板处温度应力值比较大,对结构有不利影响。  相似文献   

20.
为研究混凝土连续箱梁桥的日照温度场分布特征,以某大跨混凝土连续箱梁桥为研究对象,根据混凝土结构传热理论,结合当地气象参数与日照辐射半经验公式,采用ANSYS软件建立了混凝土箱梁桥二维瞬态日照温度场模型,模拟出晴天和阴天混凝土箱梁桥的温度场,并将模拟结果和实测结果进行对比.在此基础上,进一步模拟了混凝土箱梁桥的最大竖向温度梯度分布特征,分析了该温度分布模式对桥梁的作用效应.结果 表明,混凝土箱梁桥温度场计算值与实测值吻合良好.相比于设计规范中的混凝土箱梁竖向温度梯度模式,计算拟合的竖向温度梯度对混凝土箱梁桥的应力影响更小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号