首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 120 毫秒
1.
层流冷却方式对中厚板温度场影响的数值模拟   总被引:1,自引:0,他引:1  
针对“首钢”中厚板轧后冷却设备的布置特点,在分析中厚板轧后冷却传热特点的基础上,利用有限差分法模拟了轧后不同层流冷却方式对中厚板温度场分布的影响.模拟结果表明:中厚板内外温差随着冷却速度的增加而加大;同等冷却速度下,为了达到相同的终冷温度,不同的层流冷却方式对中厚板厚度方向的冷却速度和温度分布产生重要的影响.为了达到相同的冷却速度,且在不加大中厚板内外温差的情况下,使喷淋冷却水变稀并且间断开启集管的方式是中厚板冷却的最佳方式.  相似文献   

2.
以中厚板轧后冷却过程控制系统的实测温度处理方法为研究对象,建立具有一定容错性的实测温度滤波处理方法,消除跟踪误差、测量误差等对模型计算精度的影响.在此基础上,利用最小二乘法对实测温度进行曲线拟合,控制模型以拟合结果作为衡量钢板纵向冷却均匀性判据,并进行相应的冷却规程设定和自学习计算.建立钢板纵向分样本控制的温度处理方法,利用线性插值计算获得钢板纵向各个样本的温度值,从而满足系统进行终冷温度和冷却速度高精度控制的需要.  相似文献   

3.
中厚板轧后冷却直接影响钢板的强度和韧性.为保证中厚板质量,提出一种新的加速冷却过程控制模型,对反馈偏差进行前馈补偿,并采用控制容积积分法建立钢板温度场,包括一维温度场模型,空冷模型,水冷模型,特别是对金属温度变化时发生的相变潜热进行处理.实验结果表明,该控制模型精度较高,返红温度偏差±5 ℃,可应用于生产实际.  相似文献   

4.
中厚板轧后冷却直接影响钢板的强度和韧性。为保证中厚板质量,提出一种新的加速冷却过程控制模型,对反馈偏差进行前馈补偿,并采用控制容积积分法建立钢板温度场,包括一维温度场模型,空冷模型,水冷模型,特别是对金属温度变化时发生的相变潜热进行处理。实验结果表明,该控制模型精度较高,返红温度偏差±5℃,可应用于生产实际。  相似文献   

5.
中厚板轧后冷却的过程控制   总被引:1,自引:0,他引:1  
中厚板终轧后只能靠前馈模型控制钢板的冷却过程,普通的温度模型计算存在较大误差,针对这一问题,推导了中厚板控制冷却过程的差分模型·结合首钢中板厂控制冷却系统的改造,通过采用两次修正计算和自学习修正计算,从系统上保证了温度控制的精度·提出了热交换系数的计算方法·针对中厚板控制冷却特点,给出了层流冷却过程控制模型的自学习算法·通过采用自学习算法,进一步提高了模型的控制精度·控制冷却系统在首钢顺利投产,系统终冷温度控制合格率在96 5%以上·  相似文献   

6.
确定了中厚板ACC冷却系统的换热边界条件,建立了钢板温度场和应力场有限元计算模型.利用现场实测数据对温度场计算结果进行验证,利用间接耦合方法对钢板的应力场进行计算.分析了不同集管开启方式、不同辊道速度和不同冷却介质温度对钢板热残余应力的影响规律.  相似文献   

7.
研究了轧后冷却制度对V-Ti微合金钢性能影响。通过提高轧后冷却速度及终冷温度,以控制V(马)析出行为,从而改善钢的性能。  相似文献   

8.
结合国内某热轧带钢厂终轧温度控制模型的调试过程,分别介绍了通过调节水量和调节轧制速度进行终轧温度控制的原理;对比了轧制典型产品时采用上述两种手段调节终轧温度的轧制速度实测曲线、水量调节曲线和终轧温度实测曲线,探讨了产生不同终轧温度控制效果的原因;结合轧后冷却样本跟踪原理,分析了调节速度时对于下游轧后冷却控制过程的影响.研究结果表明:采用调节轧制速度手段的终轧温度控制精度略高;采用调节机架间水量手段时轧制速度曲线更平滑,有利于轧后冷却过程控制.  相似文献   

9.
研究了轧后冷却制度对V-Ti微合金钢性能影响。通过提高轧后冷却速度及终冷温度,以控制V(CN)析出行为,从而改善钢的性能。  相似文献   

10.
本文研究了终轧温度及控轧后冷却速度对16Mn钢板组织及性能的影响。结果表明:1.适当地降低终轧温度对改善16Mn钢板性能是有利的。2.轧后冷却速度对组织及性能有较大的影响,随着冷却速度增大,钢的强度显著提高,当冷却速度在5~22℃/s的范围内,钢的塑性及韧性均合格。冷却速度为5℃/s、15℃/s,38℃/s时,其屈服强度分别可达到35kgf/mm2,40kgf/mm~2、45kgf/mm~2的级别。可以认为,控轧及控冷是提高16Mn钢板强韧性的有效力法。  相似文献   

11.
中厚板控制冷却数学模型   总被引:16,自引:0,他引:16  
介绍了中厚板控制冷却过程中所用的数学模型,包括差分模型、空冷和水冷换热系数模型、比热和热传导率模型,并采用有限差分法模拟计算了钢板在冷却过程中厚度、宽度方向上的温度场分布,以及间歇冷却对控制冷却的影响·从模拟结果可以看出,返红时间、厚度上温度梯度随钢板厚度增加而增加;间歇冷却时钢板内部温度呈均匀下降,表面不断冷却与返红过程·在线应用证明该套数学模型计算精度较高,可以满足现场实际生产的要求·  相似文献   

12.
中厚板轧后超快速冷却系统通常采用流量-开口度曲线来加快集管流量调节速度,同时曲线标定精度直接影响集管流量调节精度.以应用于多家中厚板厂的一种新型超快速冷却设备为例,分析其电动调节阀的调节特性,给出流量-开口度曲线自动标定的有效方法.结果表明,利用该自动标定方法对集管进行流量-开口度曲线标定,在增加标定曲线维护便捷性的同时,改善了流量-开口度曲线的控制速度和精度,为提高流量控制速度和精度提供强有力的技术手段.  相似文献   

13.
采用汽雾射流冷却方式,在射流角为0°~60°时,研究了10 mm厚不锈钢板轧后超快速冷却过程中表面射流流动结构、换热区分布和钢板温降规律,分析了倾斜射流对钢板表面热流密度和冷速的影响.结果表明:射流角通过改变钢板表面滞止区和横向流区面积、水流密度、介质流动形态和流动速度,影响钢板表面换热形式和热流密度分布,进而影响超快速冷却冷速;射流角为30°时钢板平均冷速和临界热流密度均达到最大值,分别为146.5℃/s和2.75 MW/m~2.  相似文献   

14.
通过数值模拟方法对钢板冷却过程温度变化进行研究,分析冷却速度随换热系数的变化规律.结果表明,随着表面换热系数增大,冷却速度呈S形,逐渐达到一稳定值.随着换热系数的增大,当冷却结束时,钢板表面温度接近于冷却水温度,冷却速度达到极限值.极限冷却速度远大于加速冷却和超快速冷却的冷却速度.极限冷却速度随钢板厚度的增大、开冷温度...  相似文献   

15.
中厚板控冷过程的温度-应力耦合计算与翘曲分析   总被引:2,自引:0,他引:2  
以集管冷却时钢板表面的对流换热边界条件为基础,利用ANSYS软件,采用间接热力耦合法对三种冷却模式下钢板冷却过程的温度场和应力/应变场进行数值模拟,分别对模拟得到的横断面上的温度时间历程曲线和应力应变曲线进行比较,在此基础上进行了三种冷却模式下钢板翘曲变形的分析.分析结果表明,交替冷却方式有助于减小钢板厚度方向的温度梯度,温度梯度对钢板的翘曲变形影响不大,上下表面的冷却均匀性是钢板翘曲的主要原因.此分析结果为中厚板控冷获得平直板形提供了理论基础.  相似文献   

16.
热轧带钢轧后冷却控制系统优化   总被引:1,自引:0,他引:1  
为提高热轧带钢超快冷出口温度和卷取温度控制精度,针对超快冷生产调试过程中出现的问题,对轧后冷却控制系统进行了优化.针对超快冷出口纵向温度偏差较大的问题,提出超快冷换热系数多点自学习方法;采用有限差分方法,分析带钢超快速冷却后的返红现象,并在此基础上提出一种超快冷出口返红补偿方法;提出了对进入冷却区的带钢样本段进行温度再计算的方法,来消除速度波动对轧后冷却温度控制精度的影响.现场应用结果表明,优化后超快冷出口温度和卷取温度控制精度均明显提高.  相似文献   

17.
利用特厚钢板射流淬火试验装置,研究了15~35℃水温、1.0~3.0 m/min辊速对特厚钢板厚向冷速的影响,分析钢板在不同温降区间内的厚向温降、温度梯度和冷速影响因素.利用导热微分方程,采用反传热法计算钢板淬火温度场和冷速.结果表明:采用射流冲击淬火方式时,160 mm钢板心部冷速大于1.2℃/s;水温和辊速除影响钢板表面平均传热系数和换热形式外,还通过改变厚向温度梯度分布影响厚向冷速;水温或辊速升高,钢板厚向冷速降低,降低幅度与冷却强度、淬火时间以及钢板内部导热特性有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号