首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
发动机舱热管理逐渐成为提高发动机性能的重点问题,为此在传统乘用车的单风扇系统上设计了5种矩阵风扇,并利用数值模拟技术分析了阵型对冷却模块空气侧流场的影响,在此基础上引入导风管进一步研究了冷却模块的空气质量流量及前端热回流效果。结果表明:相比单风扇系统,矩阵风扇型式下通过散热器的空气质量流量有所提升,特别在高速工况下,受冲压气流的作用散热器表面的速度均匀度提高,通过散热器的空气质量流量提升,前端热回流减少;引入导风管后不仅能够进一步提高车辆在高速工况下通过散热器的进气量,而且可以降低怠速时冷凝器迎风面温度;结合导风管的矩阵风扇可在不减少冷却模块进气量的前提下,通过降低风扇转速来减少冷却系统的能耗,进而提高燃油经济性,抑制怠速时车辆前端的热回流,改善冷却模块的换热性能。  相似文献   

2.
利用Simulink软件建立了天然气发动机在瞬态加速工况下的发动机模型,该模型加入了进气压力修正模块,弥补了在瞬态加速工况下压力传感器所测进气压力的不准确,实现了进气压力的准确预估,使发动机瞬态加速工况也能控制在理论空燃比附近,并通过转速闭环控制使转速能迅速稳定在目标转速附近.仿真结果表明,模型能较好地实现瞬态加速工况下的空燃比控制,达到快速稳定转速的目的,可为发动机电控单元开发提供一定参考.  相似文献   

3.
发动机冷却风扇是车辆冷却系统的重要组成部分,静压和轴功率是评价其气动性能的重要指标,而叶尖作为风扇做功的主要部分对风扇气动性能有较大影响.以发动机冷却风扇为研究对象,研究了风扇气动性能的计算方法和叶尖参数的优化方法.首先给出了风扇气动性能的计算方法,依据试验台建立风扇计算模型,利用模型仿真得到风扇在某一转速下的性能曲线,并与试验值进行了对比验证;然后以叶尖安装角、叶尖弦长、叶尖拱高为变量设计新风扇,基于正交试验法对各叶尖参数进行优化组合,给出了风扇叶尖参数的优化方法;最后通过风扇性能曲线、叶片压力图、叶片速度矢量图对优化结果进行分析,验证了优化方法的可行性.文中关于风扇叶尖参数的分析与优化方法,对发动机冷却风扇的设计具有指导意义.  相似文献   

4.
该文在热管理系统冷却传热理论的基础上,与有关实验、数据以及计算流动体力学仿真技术相结合,将车速、发动机转速、环境温度以及汽车散热器作为输入,将汽车电子风扇作为可控制的输出函数,举例说明不同状况下所需要的不同转速值,并通过C/C++语言对汽车电子风扇的无极调控程序进行编写,对发动机水温进行有效的控制,最终实现汽车电子风扇智能化冷却控制,达到节能减排的效果。  相似文献   

5.
针对486Q汽油机连续可变进气凸轮轴配气相位系统的研制,采用发动机循环模拟数值方法研究连续可变进气凸轮轴配气相位系统的相位策略。数值模拟表明486Q汽油机在高负荷中低转速工况通过进气相位提前抑制进气在气门关闭时刻向进气道的倒流可有效提高循环进气量,使中低转速工况动力输出性能提高6%~8%,其结果与随后试验测试获得进气相位变化量一致。综合考虑燃油消耗率和有害排放物生成,数值模拟中等负荷工况进气相位参数的调节优化,通过进气相位提前,示例工况缸内残余废气系数可从9%增加到20%,NO排放量低减约80%,燃油消耗  相似文献   

6.
为提升实车散热器的换热性能,在传统乘用车单风扇系统的基础上设计出5种风扇矩阵型式,利用数值仿真分析不同矩阵型式对散热器换热性能的影响,并提出差速控制策略,进一步优化车辆冷却前端换热。结果表明:不同矩阵风扇型式对散热器换热性能的影响不同,其中矩阵风扇(风扇数N=6)所实现的换热量最大,为最优的布置型式;对于矩阵风扇(N=6),当低温区风扇以较高转速运行时,能够减少怠速工况下车辆前端的热回流,降低发动机舱内部的平均温度,有效改善发动机舱的热环境;同时在怠速工况下当转速比为3时,散热器换热量达到6.61kW,相比匀速工况提高1.71%,而当车辆低速行驶且转速比为1.8时,散热器换热量为10.73kW,相比匀速工况增加1.2%;此外,低温区风扇以较高转速运行还能够抑制发动机舱内部及护板下方的流动分离,并降低车辆低速行驶时发动机舱内部流道的沿程阻力。  相似文献   

7.
传统奥托循环发动机的燃油消耗率较高,经济性较差,不能满足日益严格的油耗法规和混合动力汽车的要求,因此改善发动机燃油经济性变得日益迫切。在混合动力发动机上采用米勒循环、EGR(废气再循环)以及高压缩比等技术均有利于降低燃油消耗率。在新设计的进气凸轮工作转角下,研究了EGR率、气门正时、压缩比等主要因素对发动机进气过程、泵气损失、燃烧过程以及发动机性能的影响规律。结果表明:推迟进气门关闭时刻,有利于降低缸内燃烧压力和温度,进气门迟闭角每增大10°CA,缸内最大温度约降低120 K,但过大的气门晚关时刻会使缸内燃烧恶化,一定程度上削弱了由于泵气损失的降低对燃油经济型的改善。在2 000 r/min,外特性工况,270°CA进气凸轮工作转角下,压缩比为13时,发动机燃油消耗率达最低为253.1 g/(kW·h)。在2 000 r/min, 1.2 MPa工况,EGR率为5%时,燃油消耗率降到了235 g/(kW·h),相比原机,采用米勒循环技术后发动机经济性有较大改善。  相似文献   

8.
为了给发动机冷却系统冷却性能分析提供方法参考,以某四缸发动机冷却系统为研究对象,基于计算流体力学仿真手段对其冷却系统冷却性能进行模拟分析。结果表明该四缸发动机冷却系统在发动机转速10000 r/min时的工作流量为90 L/min,该流量工况下缸体水套排气侧区、缸头鼻梁区冷却液流速满足高温区域流速不低于1.5 m/s的设计要求。4缸鼻梁区截面流量最小,3缸鼻梁区截面流量最大。经发动机台架热平衡实验验证,4缸的缸头火花塞垫片温度最高,3缸的缸头火花塞垫片温度最低。实测温度结果分布趋势与各缸鼻梁区截面处流量分布、发动机缸头温度场分布趋势基本一致,表明构建的冷却系统数值仿真模型是可靠的。缸头火花塞垫片在极限工况下的最高温度213℃在可接受范围内(小于250℃),表明该四缸发动机冷却系统的冷却性能较好,可满足该四缸发动机的冷却。  相似文献   

9.
为解决目前发动机冷却系统开发过程中流程复杂、性能过剩等问题,结合实车项目对某轿车冷却系统进行了匹配研究。以某紧凑型自然吸气轿车的冷却系统为研究对象,基于发动机热平衡试验数据和整车结构参数,选取高速高档、爬坡6%和爬坡10%作为匹配工况,对散热器和冷却风扇进行匹配设计。利用KULI软件对所匹配的冷却系统进行一维建模,并进行性能仿真,最后对试验样车进行了热害试验。研究结果表明,在全部设计工况下,仿真模拟和热害试验得出的散热器控制温度基本吻合,其误差均低于2%,因此所匹配的冷却系统能够满足整车要求。该匹配方法有效缩短了设计周期、降低了设计成本。  相似文献   

10.
分析了传统的冷却系统的缺点:水泵风扇效率低下、过度冷却与暖机时间过长等。介绍并分析了发动机冷却系统的核心零部件(如水泵、风扇、节温器)对降低冷却功耗、提高发动机效率作用。在此基础上,介绍了先进高冷却系统加强传热的方法;如使用纳米流体、核态沸腾传热、形成气液混合流等。展望了未来汽车发动机冷却系统的发展方向,冷却系统小型化、主副冷却、分体冷却、逆流式冷却、精确冷却、集成缸盖技术及水冷式中冷器。  相似文献   

11.
某轿车在进行整车冷却温度场试验时,发现其发动机舱内进气口、散热器风扇表面、转速传感器、蓄电池表面等零部件温度值均超其设计耐热极限值,为了解决这一问题,通过计算机模拟,运用流体分析Fluent软件对发动机舱进行热流场仿真分析,发现发动机舱内部流场回流严重,通过优化分析,增加泡沫缓冲块以及封堵前格栅盖板后,发动机舱内部回流现象被有效控制。  相似文献   

12.
针对某A级轿车,首先通过整车风洞试验验证了计算流体力学仿真方法的可靠性,接着基于该数值计算方法,对复杂车身数模进行了封闭格栅、轮拱罩并平顺底部的简化处理,研究了车身简化对不同轮辐工况下整车气动阻力系数变化趋势的影响。结果显示,简化前后阻力系数趋势发生了改变,前后轮和车底部流场出现了明显变化。在此基础上,仅针对发动机复杂的舱内部件进行了不同程度的简化,结果显示,阻力系数趋势对舱内部件的简化也很敏感。因此,在以降低整车气动阻力为目标进行车轮局部优化时,需要谨慎地进行车身的简化工作。  相似文献   

13.
针对后置式汽车发动机舱过热问题,以某混合动力汽车为研究对象,运用3D/1D数值耦合方法,建立了发动机舱散热系统的耦合计算数值模型.通过耦合数值计算,对不同环境温度和车速条件下的机舱发动机部件表面对流换热系数、机舱空间流量系数进行了研究,总结了对流换热系数、流量系数的一般性规律,并拟合了相应的经验关系式,为发动机冷却系统一维模型以及发动机舱的设计研究提供了参数依据和理论基础.同时通过对机舱热流场分析,发现不同的机舱布置形式下,对流换热系数和机舱流场有明显影响.  相似文献   

14.
汽车发动机起动过程的动力学仿真   总被引:8,自引:0,他引:8  
发动机怠速自动起停是混合动力汽车的重要工作模式,它能避免发动机在怠速下运行,有效减少燃油消耗、尾气排放和发动机磨损.对混合动力汽车起步时发动机起动动力学进行了系统研究,基于发动机起动过程的阻力特性的建模与仿真,提出了ISG电机驱动控制策略,建立了ISG电机-发动机的综合控制模型,进行了发动机起动过程中的动力学仿真.仿真结果表明,所采用的ISG电机满足快速起动发动机的时间要求.  相似文献   

15.
吸气式高超声速技术研究进展   总被引:1,自引:0,他引:1  
系统总结了中国空气动力研究与发展中心在吸气式高超声速技术研究方面取得的主要进展,包括:试验设备、超燃冲压发动机、数值模拟以及机体/推进一体化飞行器。CARDC经过十多年的努力,建成和改造了三种类型的高焓设备:脉冲式燃烧加热风洞、连续式燃烧加热风洞和电弧风洞。开展了多种尺度的超燃冲压发动机的直连式和自由射流式试验,获得了发动机的基本性能及其随油气比、喷孔位置等的变化规律。通过连续式和脉冲式风洞试验结果对比,表明工作时间大于100 ms的脉冲式燃烧设备是开展发动机基本性能研究的经济、高效试验手段。成功研制了三维大规模并行数值模拟软件平台AHL3D并广泛应用于发动机研究。在Φ0.6 m风洞中,完成了1.5 m带动力飞行器试验,获得了发动机工作和不工作状态下的飞行器推阻及升力特性。同时提出了地面试验、CFD和飞行试验三者综合研究分析的重要性。  相似文献   

16.
基于矿用汽车载荷变化大、行驶环境多变、油门变化频繁的特点,依据重载爬坡和轻载下坡的典型工况,制定了重型矿用汽车多参数动力性换挡策略.利用函数叠加法建立康明斯QSL-FR91674型发动机全特性曲线,得到不同油门开度情况下发动机输出转速与输出转矩的表达式.根据发动机输出动力特性,计算得到3550型矿用汽车车速、油门开度和加速度三参数动力性换挡规律.再结合道路状况识别方法、车辆载荷、驾驶员操作意图,针对轻载下坡和重载爬坡工况,修正得到重型矿用汽车多参数动力性换挡规律.在Maplesim中建立换挡模型,通过仿真计算,得到修正前后车辆轻载下坡路况时挡位和车速变化曲线,后者避免了不必要的换挡,保证了车辆的动力性能.  相似文献   

17.
为研究超声速气流对分离过程的影响,开展了两级飞行器高速气流下动态分离过程的数值模拟,建立了高速气流环境下含空气阻力内弹道模型;基于嵌套网格技术,分析了不同高速气流来流速度及攻角下前级的气动与运动特性,得到了前级典型气动参数、动态分离速度及静动态分离速度差异变化规律.结果表明:在本文研究范围内,静动态分离速度差异在不同高速气流来流速度和攻角条件下变化明显.随高速气流来流速度增大,前级分离结束时刻的阻力系数、升力系数和动态分离速度减小,速度差异因子增大;随攻角增大,阻力系数、升力系数和分离速度增大,速度差异因子减小.   相似文献   

18.
采用流体力学软件(Star CCM+)建立32 m简支箱梁和CRH2型高速列车的全尺寸模型,对不同风屏障开孔形式的车桥系统进行数值模拟,研究了风屏障开孔形式对风屏障挡风效率和流场的影响,分析了车辆三分力系数和桥梁三分力系数随开孔形式的变化规律。结果表明:风屏障的开孔形式对车辆的阻力系数影响较大,且随着开孔边数的增加各车辆的阻力系数先减小后增大,开孔形式为格栅形时阻力系数最大。采用格栅形式时中车比头车的力矩系数大了63.6%;中车的阻力系数和力矩系数随开孔边数的增加基本呈下降趋势,位于背风侧时中车阻力系数和力矩系数变化较缓;随着风屏障开孔边数的增加,桥A段、桥B段和桥C段的CRWBD都呈增加趋势,其中桥B段的贡献率增加地最多,增加了12.2%。风屏障对阻力和力矩的贡献率CRWBD、CRWBM基本都超过了50%。  相似文献   

19.
为提高单行星排构型的混合动力汽车(hybrid electric vehicle, HEV)的燃油经济性,降低车辆燃油消耗量,提出了一种基于门控循环单元神经网络(gated recurrent unit neural network, GRU-NN)速度预测模型与自适应差分进化(adaptive differential evolution, A-DE)算法的能量管理策略,在模型预测控制(model predictive control, MPC)框架下预测未来车辆的行车速度,将整个工况内的全局优化求解问题转化为在预测时域内的局部优化求解,以发动机燃油消耗量最低与行车过程电池荷电状态(state of charge, SOC)平衡为目标,利用A-DE算法实现预测域内的最优控制序列求解。仿真结果表明,在实车采集的道路工况下,基于GRU-NN与A-DE算法的能量管理策略相较于ECMS燃油消耗量减少了4.55%,相较于动态规划燃油经济性达到了93.04%。  相似文献   

20.
涡桨发动机在空中起动之前的风车状态会产生一定的风车阻力,严重影响飞机的操纵性和稳定性,因此需进行风车阻力特性的准确计算评估,以化解飞行风险.针对涡桨发动机装机飞行中的风车特性,采用基于标准桨特性图修正原理,建立计算评估方案,并以某型涡桨发动机设计定型试飞为依托,进行不同工况下的试飞验证研究.结果表明:在相同高度,低速风车状态下,风车阻力随着速度增加而增大,而高速风车状态下,风车阻力随着速度增加而减小;随着高度增加,低、高速风车阻力均减小;低速风车状态下,桨叶角基本处于限动位,而转速随着速度增加而增加;高速风车状态下,转速达到平衡转速,桨叶角随着速度的增加而增大.可见,建立的涡桨发动机风车阻力计算方法合理、可行,计算结果精度满足试飞要求,能够为后续涡桨发动机空中起动科目的飞行试验提供技术支撑.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号