首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
张晴  周巍 《科技信息》2008,(6):312-313
利用锥形量热仪进行实验,对比分析不同配方比下膨胀型阻燃PC /ABS合金材料的点燃时间(TTI)、热释放速率(HRR)、质量损失速率(MLR)、火灾危险性指数 (PkHRR/TTI)等燃烧参数,进而全面了解不同配方比下材料的燃烧性能以及阻燃效果.在实验基础上对含不同比例的聚磷酸铵(APP)与三聚氰胺(MA)的膨胀型阻燃剂不同阻燃机理进行讨论.  相似文献   

2.
【目的】以广西4种乔木树种叶片为研究对象,测试其燃烧性能,为林火发生预测提供科学依据。【方法】以格木(Erythrophleum fordii)、马尾松(Pinus massoniana.)、台湾相思(Acacia confusa)和红椎木(Castanopsis hystrix)等4种乔木的叶片为材料,采用锥形量热仪对其燃烧性能进行测试,测定热释放速率(heat release rate,HRR)、总释放热(total heat release,THR)、烟生成速率(smoke produce rate,SPR)、烟释放总量(total smoke release,TSR)、质量损失速率(mass loss rate, MLR)等指标。【结果】①格木和红椎木的热释放速率(HRR)和质量损失速率(MLR)曲线近似,马尾松和台湾相思的HRR和MLR曲线近似,4种可燃物的总释放热(THR)、烟生成速率(SPR)和烟释放总量(TSR)曲线近似,但数值不同。②4种可燃物最大热释放速率大小顺序依次为:台湾相思(285.22 kW/m2)>马尾松(229.85 kW/m2)>格木(216.10 kW/m2)>红椎木(200.12 kW/m2)。4种可燃物THR大小顺序依次为:格木>红椎木>台湾相思>马尾松。4种可燃物的SPR峰值大小顺序依次为:格木(0.07 m2/s)>台湾相思(0.05 m2/s)>马尾松(0.04 m2/s)=红椎木(0.04 m2/s)。4种可燃物TSR大小顺序依次为:格木(191.94 m2/m2)>红椎木(162.83 m2/m2)>台湾相思(119.67 m2/m2)>马尾松(95.49 m2/m2)。4种可燃物的MLR大小顺序依次为:格木(4.92 g/s)>马尾松(2.68 g/s)>台湾相思(2.63 g/s)>红椎木(1.92 g/s)。【结论】4种树种叶片的燃烧性能有所差异。格木、红椎木、马尾林、台湾相思的叶片燃烧前期的HRR、THR、SPR和TSR相差不大,后期格木和红椎木明显高于马尾松和台湾相思,即格木和红椎木的叶片燃烧持续性高于马尾松和台湾相思的,更利于火灾持续。  相似文献   

3.
以钛酸酯改性沥青阻燃剂BFR-Ti和阻燃增效荆硼酸锌ZB为助荆,以SBS改性沥青为母体制备隧道阻燃沥青,通过氧指数法、烟密度法、锥形量热法和热重分析等方法系统研究了BFR-Ti与ZB协同阻燃SBS改性沥青的燃烧性能,探讨了二者的协同阻燃机理.结果表明,与SBS改性沥青/BFR-Ti相比,SBS改性沥青/BFR-Ti/ZB体系的氧指数略有上升,烟密度、热释放速率(HRR)、质量损失速率(MLR)以及有效燃烧热(EHC)等指标均明显下降,实际成炭量增加;SBS改性沥青/BFR-Ti具有显著的吸热阻燃机理和凝聚相阻燃机理的特征,SBS改性沥青/BFR-Ti/ZB是以凝聚相阻燃机理为主,兼具协效阻燃和吸热阻燃机理.  相似文献   

4.
通过极限氧指数法(LOI)和垂直燃烧(UL-94)测试考察了一种无卤阻燃乙烯-醋酸乙烯酯共聚物(EVA)的阻燃性能;利用热重分析法(TG)研究了纯EVA及阻燃EVA在不同升温速率下的热稳定性及热分解动力学,并采用Kissinger及Flynn-Wall-Ozawa方法计算了纯EVA和阻燃EVA的热分解表观活化能。结果表明,添加40%复合膨胀阻燃剂的EVA复合材料,极限氧指数达到28.6%,UL-94测试达到V-0级,残炭量相对纯EVA明显提高;随着升温速率增大,EVA和阻燃EVA的起始失重温度和各阶段的失重峰温均向高温方向移动;二者在第一阶段的热分解活化能均低于第二阶段,阻燃剂的添加使EVA的最大失重速率明显降低,热分解表观活化能提高,增强了材料的热稳定性和阻燃性。  相似文献   

5.
分别采用原位反应增容法和直接添加阻燃剂法制备了膨胀型非卤阻燃PP,并利用锥形量热仪(CONE)系统评价了这两种方法制备的膨胀型非卤阻燃PP的阻燃性能。结果表明,膨胀型非卤阻燃PP具有优异的阻燃性能,不同制备方法对其阻燃性能有显著的影响。与直接添加法相比,采用原位反应增容法制备的膨胀型非卤阻燃PP的点燃时间(TTI)从23秒延长至27秒,最大热释放速率(pk-HRR)从298 Kw/m2降至249 Kw/m2,平均热释放速率(av-HRR)从125.4 Kw/m2降至86.5 Kw/m2,总释放热(THR)从148.6 MJ/m2降至124.5 MJ/m2,总生烟量(TSR)从372 m2/m2降至266 m2/m2,燃烧残重从27.5%增至33.9%;说明了原位反应增容技术能更有效的降低膨胀型非卤阻燃PP在火灾中的危险性。  相似文献   

6.
采用熔融共混挤出法,制备了掺杂少量硬硼钙石(CB)或硼酸锌(ZB)的阻燃聚丙烯(PP)复合材料,研究了CB和ZB对填充蜜胺包覆聚磷酸铵(APP-102)、三聚氰胺氰尿酸盐(MCA)阻燃PP复合材料的燃烧性能、热稳定性、机械性能、熔融结晶性能的影响. 结果表明:少量CB或ZB(质量分数为2.0%)能有效提高阻燃PP复合材料的阻燃性能,极限氧指数(LOI)从25.7%分别提高到27.6%和27.7%,UL-49等级从V-2提升到V-0,热释放峰值(pHRR)和总放热量(HRR)有一定程度的降低; CB和ZB有效改善了阻燃PP复合材料的热稳定性,燃烧时硼元素在表面促进形成连续紧密的炭层; 少量CB或ZB的添加不仅没有劣化阻燃PP复合材料的机械性能,而且使拉伸模量、弯曲模量略有升高,同时提高了阻燃PP复合材料的结晶速率和结晶度. 因此,CB与ZB类似,可被应用于PP的协同阻燃工艺.  相似文献   

7.
将硼酸锌(ZB)作为促进成炭的协同剂与双环笼状磷酸酯Trimer膨胀阻燃剂(T-IFR)复配,应用于膨胀阻燃环氧涂层,研究了ZB的协同耐火行为及作用机理.燃烧背温测试仪及锥形量热仪燃烧测试表明,适量添加ZB可产生良好的协同耐火作用,涂层的耐火时间由17 min提高到30 min,最大热释放速率由379.8 kW/m2降低到258.5 kW/m2,最大烟释放速率由0.11 m2/s降低到0.05 m2/s.热失重分析、傅里叶红外光谱、X-射线光电子能谱及扫描电镜研究表明,涂层耐火作用的提高与ZB增加了T-IFR热解残炭量,在残炭中形成了BPO4等耐热产物及改善了涂层燃烧产生的膨胀炭层的均匀性和致密性有关.  相似文献   

8.
将聚磷酸铵(APP)、磷酸三(β-氯异丙基)酯(TCPP)、氰尿酸三聚氰胺(MCA)、可膨胀石墨(EG)及EG与APP复合阻燃剂分别添加于硬质聚氨酯泡沫(RPUF),采用氧弹量热仪、氧指数仪、燃烧背温测试仪及锥形量热仪研究了阻燃RPUF燃烧热值(HoC)与氧指数、炭层阻隔作用及热释放等阻燃性能参数的相关性;采用X射线光电子能谱表征了RPUF/APP及RPUF/EG/APP体系燃烧热值测试后残炭表面P元素的化学状态. 研究表明,各阻燃RPUF的HoC由低到高的顺序为RPUF/APP,RPUF/EG/APP,RPUF/TCPP,RPUF/MCA,RPUF/EG,其中RPUF/EG/APP的氧指数相对最高,炭层阻隔效应较好,热释放及质量损失相对最低,产烟量适中,综合阻燃性能最好. RPUF/EG/APP燃烧热值测试残炭表面五氧化二磷比例(57.9%)大于RPUF/APP(35.9%). 阻燃RPUF的HoC主要与体系元素组成及阻燃剂HoC的贡献有关,也与膨胀阻燃体系中组分的相互作用有关;而氧指数、炭层的阻隔作用、热及烟释放等阻燃性能主要取决于阻燃机理.   相似文献   

9.
以纳米氢氧化镁(MH)为阻燃剂,加入乙烯-醋酸乙烯酯(EVA)中,制得纳米MH/EVA复合材料.采用FR-IT和SEM表征了材料的结构、阻燃剂形貌和分散情况,采用TG分析了材料的热分解状态,利用氧指数和垂直燃烧测定法分析了材料的阻燃性能,并测试了材料的力学性能.结果表明:MH纳米化后可以降低阻燃剂用量并保持材料的阻燃等级,复合材料中纳米MH含量低于20%时在EVA中分散良好,对EVA有增韧作用;纳米MH含量高于30%时,阻燃剂粒子团聚现象严重,材料力学性能下降;纳米MH含量为50%时,阻燃等级为V-0级,氧指数为28.6%.  相似文献   

10.
聚苯乙烯泡沫夹芯板的火灾危险性评析   总被引:1,自引:0,他引:1  
四川汶川"5.12"特大地震发生后,受灾群众过渡安置板房大量采用聚苯乙烯泡沫(EPS)夹芯板搭建。本文结合EPS的燃烧特点、火灾行为及其危害,利用ISO9705实验装置测得的热释放速率(HRR)和总释热值(THR)评析了EPS夹芯板不同连接、封装和隔断方式对火灾危险性的影响,对灾区板房搭建施工中的防火措施提出了建议。  相似文献   

11.
【目的】解决卤锑阻燃高密度聚乙烯(HDPE)复合材料燃烧时发烟量大、熔融滴落严重等问题。【方法】采用自制的碱性钙基膨润土(Ca-MMT)与卤锑阻燃剂复配阻燃HDPE,通过极限氧指数(LOI)、水平燃烧等级、力学性能和热稳定性等测试,研究Ca-MMT和卤锑阻燃剂对HDPE的协同阻燃效应。【结果】HDPE/DBDPE/Sb2O3/Ca-MMT复合材料的LOI由纯HDPE的19.60%提高至32.77%,水平燃烧等级由HB75级提高至HB级,且燃烧时不产生熔滴,具有良好的成炭效应;拉伸强度由13.35MPa提高至23.33MPa,力学性能良好;失重率由纯HDPE的96.17%降至86.50%,热稳定性明显提高。碱性钙基膨润土的最佳添加量为4%。【结论】自制的Ca-MMT与卤锑阻燃剂有较好的协同阻燃作用。  相似文献   

12.
高白度十溴二苯乙烷的工业规模生产工艺研究   总被引:2,自引:0,他引:2  
采用过量溴化二苯乙烷法和新型催化剂,研究了阻燃剂十溴二苯乙烷的工业规模合成工艺.在58~60 ℃进行10~14 h的二苯乙烷溴化,粗产品经过8 h球磨后处理得到十溴二苯乙烷,白度达到88(L)以上.结果表明:催化剂用量为二苯乙烷用量的25%时,既提高了产品白度又降低了生产成本.该工艺产品其他性能指标和国外产品相同,具有良好的热稳定性和抗紫外线能力.  相似文献   

13.
阻燃PET的结晶性能研究   总被引:2,自引:0,他引:2  
将含卤磷酸酯(A)、芳香族溴化物(B)以及含溴聚合物阻燃剂(C)与PET共混,制成阻燃型PET。应用差示扫描量热仪(DSC)法研究了这三种新型阻燃剂的加入对PET结晶性能的影响。结果表明,阻燃样品的玻璃化转变温度Tg、冷结晶温度Tgc、溶点Tm以及熔融结晶温度Tmc均比纯PET下降。阻燃剂的加入使PET的冷结晶容易进行,而从熔融态降温时的结晶过程变难。  相似文献   

14.
二氧化硅厚膜材料的快速生长及其致密化处理   总被引:1,自引:1,他引:0  
采用火焰水解法 ( FHD)在 Si片上快速淀积出 Si O2 厚膜材料 ,材料膜厚 40 μm以上 ,生长速率 8μm/ min.将该材料分别在真空中和空气中高温致密化处理 ,获得各种形态的二氧化硅厚膜材料 .利用 XRD,SEM,电子显微镜等仪器对 Si O2 膜的表面和膜厚进行测试分析  相似文献   

15.
Mg(OH)2的结构形态对LDPE阻燃性能的影响   总被引:6,自引:0,他引:6  
以低密度聚乙烯(LDPE)为基体树脂,利用两种不同形态的氢氧化镁作为阻燃剂,研究其阻燃性能。着重研究了两种不同形态氢氧化镁对基体树脂阻燃性能和力学性能的影响。  相似文献   

16.
采用火焰原子吸收光谱法对苜蓿的茎、叶、花和种子中的Na、K、Ca、Mg、Fe、Zn、Cu、Mn、Cr、Co等10种微量元素进行了测定分析。采用HNO3+HC lO4混酸作消化液处理样品,各元素在实验范围内加标回收率和精密度均较好,加标回收率为95%~105%,相对标准偏差(RSD)小于5%。结果表明:苜蓿各部位微量元素差异较大,茎的微量元素为Ca>K>Zn>Na>Fe>Mg>Mn>Cr>Cu>Co;叶的微量元素为Ca>K>Zn>Mg>Na>Fe>Mn>Co>Cu>Cr;花的微量元素为Mg>K>Zn>Na>Mn>Fe>Ca>Cu>Cr>Co;种子的微量元素为K>Mg>Fe>Mn>Zn>Na>Ca>Cu>Co>Cr;不同微量元素间,K、Mg、Zn、Na、Car的质量分数为叶>茎>花>种子;Fe、Cr的质量分数为茎>叶>种子>花;Mn、Co、Cu的质量分数为叶>种子>茎>花。苜蓿中含Ca、K、Zn、Mg、Cr等人体需要的微量元素较高,这对苜蓿的综合开发十分有益。  相似文献   

17.
原子吸收法测定缬草根中的微量金属元素   总被引:2,自引:1,他引:1  
采用马弗炉干法灰化法消化样品,火焰原子吸收法连续测定天然香料植物缬草根中微量金属元素,检测出 K,Ca,Na, Mg, Fe, Zn, Cu, Co, Ni,Mn, Pb 等11种元素,其中 Fe, Zn, Cu, Co, Mn, Ni 等 6 种人体必需元素,加标回收率在( 96. 4~ 105.5)%.  相似文献   

18.
反应火焰喷涂合成TiC-Fe涂层的反应机理   总被引:9,自引:2,他引:7  
利用差热分析(DTA)、X-射线分析(XRD)等测试手段,研究了反应火 喷涂过程中喷涂粉末(Fe-Ti-C体系)的反应机理,研究结果表明,在反应火焰喷涂合成TiC-Fe涂层中,喷涂粉末在习行过程中的反应是逐步进行的,喷涂距离为125~170mm是发生反应的主要区域,在到达工件表面时,反应已基本结束,因此与传统 涂相比,反应火焰喷涂的优势在于,利用廉价原料一步合成、沉积比较昂贵的涂层材料。  相似文献   

19.
采用火焰原子吸收光谱法在同一体系中测定葡萄糖酸钙(铁、锌)制剂中三组分的含量。方法简单,快捷。精密度与准确度满足分析要求。  相似文献   

20.
纤维用PET的燃烧及阻燃机理研究   总被引:1,自引:0,他引:1  
通过对纤维用PET及添加不同阻燃剂的PET样品燃烧的气相、固相产物的红外光谱和CONE实验分析,探讨了PET的燃烧和阻燃机理。认为PET燃烧时,在生成气相产物的同时,还会发生交联反应形成环烯结构。溴化磷酸酯阻燃剂具有磷、溴协同效应,可在气相到固相全过程内起阻燃作用;而芳香族溴化物主要是气相阻燃机理;聚合型溴化聚芳烃,由于聚合物链可能参与PET降解过程的交联反应,所以也是气相、固相均有阻燃作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号