首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
为了分析能级和夯击次数对土体有效加固深度的影响,依托西部某土石混合料高填方路堤强夯加固工程,结合强夯法在某高填方路堤回填加固中的应用,借助瑞雷波法测定夯实深度,进行了颗粒级配、颗粒密度、标准击实等土工试验,分析了填料的工程性质。结果表明:4 000,5 000和6 000 kN·m三种强夯标准处理所获得的竖向有效加固深度分别为8,9和10 m,最佳夯击次数分别为11,8和6次,土体浅层2 m以内因受夯击能量过大而振松,密实度反而降低,研究成果为优化土石混合料高填方路堤的强夯设计提供了参考依据。  相似文献   

2.
结合湖南郴州机场挖填交界区域路基工程实际,基于强夯处置路基加固机理,应用强夯法处理挖填交界面,开展夯击能为2.5 MN·m和3.0 MN·m,夯点间距为4.0,4.5和5.0 m的强夯处置现场试验,分析填土级配、强夯变形量及固体体积率的变化规律,探究不同夯击参数作用下的地基处理效果,提出最优夯击参数并研究在最优夯击参数条件下挖填交界面的差异变形特征。研究结果表明:填方区采用夯击能为3.0MN·m点夯2遍+1.0 MN·m满夯1遍,夯点间距为4.0 m;挖方区采用夯击能为2.5 MN·m点夯2遍+1.0MN·m满夯1遍,夯点间距为4.5 m;强夯处理后挖填交界处的差异变形量仅为0.02 m,固体体积率相对差为0.5%,每层填筑厚度4 m满足有效加固深度要求,设计参数可以为其他相似填料处治地基工程提供参考。  相似文献   

3.
利用能级为15 000kN.m的高能级强夯加固粗颗粒碎石回填地基,测试夯击过程中夯坑及其周边土体的沉降变形,并对强夯后的地基加固效果进行检测与评价.可发现,第1、2和3遍夯击时的平均夯坑深度分别达到4.38,3.71和1.93m,夯击过程中地表土体都发生沉降变形,并未发生隆起;利用多道瞬态面波法评价该场地强夯加固深度至少达到16.5m,并且在整个加固深度范围内,未出现软弱层,夯后地基承载力远高于设计要求值.最后,提出了利用Menard公式评价高能级强夯处理粗颗粒碎石回填地基有效加固深度时n值的范围,为同类场地条件下高能级强夯工程的设计、施工与检测提供了参考.  相似文献   

4.
以广东某石油仓储工程高能级强夯法地基处理为背景,采用平板载荷试验、动力触探试验、标准贯入试验、瑞利波试验及室内土工试验相结合的方法,研究陆域与海域深厚碎石回填地基15 000 k N·m高能级强夯下的有效加固深度。研究结果表明:陆域强夯区的有效加固深度不小于10.0 m,海域强夯区的有效加固深度不小于8.0 m;陆域回填区与海域回填区夯点与夯间处强夯加固效果没有显著差别,说明试验设计参数合理,场地经15 000 k N·m能级强夯处理后地基的均匀性较好,强夯影响深度超过20.0 m,消除了20.0 m深度范围内粉砂层的液化,但对于深厚填土覆盖下淤泥质粉质黏土层的影响不大。在本试验条件下,对于深厚的碎石土杂填土地基,建议采用Menard公式确定有效加固深度时的修正系数α介于0.21~0.26之间。  相似文献   

5.
泥岩高填方地基要解决的核心问题主要是湿陷沉降变形问题,而强夯法具有较大的单位压实功,可以提高填方压实质量,减少其发生湿陷沉降变形的几率。然而,现行有关设计标准对于泥岩高填方地基的分层强夯设计缺乏指导,对于夯点间距等重要强夯设计参数规定尚不统一。依托±800 kV昆北换流站工程,开展了强夯方案技术经济比较和现场试验工作,为类似泥岩地基的分层强夯设计提供参考。技术经济比较表明,6000 kN·m方案优于4000 kN·m方案。现场试验表明,6000 kN·m强夯地基承载力特征值可达200 kPa,变形模量平均值超过30 MPa;夯点间距分别为5 m、6 m时,6000 k N·m的有效加固深度均达到8 m,但后者夯间、夯点的密实度差异相对较大,地基均匀性较差。  相似文献   

6.
强夯法处理辽西湿陷性黄土路基的效果分析   总被引:2,自引:1,他引:1  
为了确定强夯法处理辽西湿陷性黄土路基的技术参数,采用现场测试和室内试验相结合的方法,分析并对比了试验路段在强夯前后的黄土物理力学性质的变化.结果表明:夯击能为800~1600 kN·m、夯击数不小于8击,对处理深度4~6 m的湿陷性黄土较为有效,不仅可消除湿陷性,并可较大幅度降低压缩性.该成果已应用于阜新一朝阳高速公路湿陷性黄土路基处理工程中.  相似文献   

7.
在一侧可观测砂土位移的模型箱内开展室内强夯模型试验.重点研究了砂土地基在不同强夯能级作用下的地表夯坑变化、动应力响应特性、动应力衰减规律,同时通过对比强夯作用前后砂土地基不同深度处彩砂的位置变化,分析了强夯后砂土地基内部位移的发展规律及分布情况.试验结果表明:适用于砂土地基的最佳夯击能为6000 kN·m,夯击能2000、4000、6000、8000 kN·m对应的最佳单点夯击次数分别为15、14、12、12次.强夯对砂土的加固是一个自上而下的过程,浅层需要较少的次数即可密实,深处土体需要夯击次数的提升和夯击能的提升才能更好密实.  相似文献   

8.
山区机场粉质粘土高填方地基处理方法   总被引:1,自引:0,他引:1  
为了采用合理、经济的方法对山区某粉质粘土高填方机场地基进行处理,减小工后沉降,通过比选山区机场常用地基处理方法:振动碾压法、冲击碾压法以及强夯法,确定强夯法为适用于本机场地基处理的最优方法.通过现场强夯试验区不同夯击能(1,2,3,4 MN·m)进行强夯处理对比试验,根据地基处理前后物理力学参数和处理效果分析,确定夯击能为2 MN·m,点距4m为该工程的合理加固参数.  相似文献   

9.
某站场地基强夯振动影响范围研究   总被引:3,自引:0,他引:3  
针对某站场地基采用6 000 kN.m夯击能强夯加固海漫滩填海区工程,现场测试了地表振动速度,在此基础上,分析研究了振动在水平方向的衰减规律、主振频率等,分析了拟建场地边立交桥在不同夯击能下的安全距离.结果表明:地表最大振动速度的衰减规律满足乘幂关系;强夯产生的振动的主振频率均处于10 Hz以下;以地表振动速度作为判别标准,测得该场地在6 000 kN.m夯击能下对立交桥的安全距离为30 m.  相似文献   

10.
为了在施工实践中更好地掌握和应用强夯原理、设计参数以及施工工法,在现场代表性区域内,通过不同参数下试夯试验的对比性研究,分析试验监测与检测相关数据,确定了工程可行性设计施工参数,包括夯击数、落距、夯距等。工程实践证明强夯法是一种经济、简便、可靠的大面积回填区域加固方法,对相关工程具有一定的实践与指导意义。  相似文献   

11.
结合青岛高新技术产业开发区的软基加固处理实践,对高真空击密法加固饱和软土地基在本地区的加固效果进行了研究。通过对加固处理过程中土体的超静孔隙水压力变化,变形、承裁能力变化等进行监测,并对大面积施工过程中各参数包括强夯的夯击能、有效加固深度、务击闻隔时间、夯击次数和遍数、真空降水的时间等进行优化分析,试验结果表明高真空击密法能充分发挥强夯和真空降水的优点,有效加固了土体。  相似文献   

12.
为有效分析隔振沟对强夯引起的土体变形和应力的影响, 基于二维离散元法理论和已有的砂土地基强夯离心机试验, 建立了强夯的地基处理模型, 研究了隔振沟深度和位置对地基表面隆起的影响, 从颗粒尺度方面对隔振沟外 3 m 范围内的应力变化进行了探讨. 结果表明: 隔振沟可以有效减小地基表面的隆起变形, 但隔振沟位置和深度对地表的隆起变形影响较小; 隔振沟对应力变化的影响随观测点深度的增加逐渐减小, 当深度达到地面以下 4 m 时, 隔振沟的设置对远离震源一侧监测点处的应力变化影响很小.  相似文献   

13.
游车制动产生的动载荷是造成修井机井架振动冲击甚至过载失效的根源,针对制动特性与制动性能关系的研究有待深入。目前对修井机制动性能的研究多为基于单个零部件的摩擦分析,难以完全满足制动系统性能优化、评价的需要。以油田小修作业机制动系统为研究对象,基于刚体动力学理论研究不同制动特性对整机制动性能的影响,利用正交试验法分析不同工况下制动参数与制动性能的关系。研究发现:采用正矢制动特性时游车大钩制动加速度曲线优化明显,制动力矩增长率及最大制动力矩是影响制动性能的关键因素,因此正常制动力矩增长率控制在2000-3000N·m·s-1,最大制动力矩取15-20kN·m时,能满足现场制动时间与效率的最优解。  相似文献   

14.
莺歌海盆地为快速沉积、沉降的伸展-转换盆地,泥岩压实为常见的指数压实模式,同时,泥岩压实曲线具有典型的稳定压实带:即明显偏离正常压实趋势线,其声波时差值基本保持在约300μs/m,厚度一般为700~1000m,岩性主要以莺-黄组深海—半深海相泥岩为主,为孔隙度基本稳定段,但其测试地层压力却为正常静水压力.分析了泥岩声波稳定压实带的层位、岩性组合、热演化剖面、气测烃及与黏土矿物转化带的关系,认为其形成并非只与黏土矿物转化有关,中央凹陷带底辟区的泥岩稳定压实带是黏土矿物转化和流体排放共同作用形成的,非底辟区则是局部流体排放造成的结果.稳定压实带普遍位于超压带顶面上部,反映出稳定压实带实际上为超压系统的封闭层,强烈底辟区稳定压实带的消失则可能表明深部超压流体向浅部的排放,油气则可能主要集中在浅部层位.因此,正确识别稳定压实带对于准确预测欠压实引起的偏离正常压实趋势线的超压及油气聚集分布具有重要的理论和实践意义.  相似文献   

15.
通过室内试验,分析高液限粘土的压实性能和最佳压实状态,结合路基工艺实验成果,提出直接利用高液限粘土修筑公路路基的质量控制标准.以福建厦门集美大道高液限粘土为例,经室内试验和现场工艺试验系统分析认为,浸水加利福尼亚承载比(CBR)大于3,只适用于下路堤的填筑,其压实度标准K≥94%.按6种击实功组合,对不同含水量的高液限粘土进行了系列化浸水CBR试验.结果表明,在最佳压实状态下,随着水质量分数的逐渐增大,所采用的击实功宜相应减小,通过水的质量分数和击实功的适当控制,高液限粘土可用于拟建道路的下路堤填筑.  相似文献   

16.
强夯振动影响与构筑物安全距离研究   总被引:16,自引:0,他引:16  
强夯地基处理技术是一种常见、有效的地基处理方法,但由于其施工时 的噪音、振动等对周围建筑物和环境的影响而限制了它的作用,通过对某高速公路强夯地基工程的实践,对不同夯击能下强夯地基处理施工时所产生的地面振动进行了现场监测,经过对这些实测振动资料的深入分析,认为当强夯所引起的地面振动加速度衰减到0.1g时,对建筑物几乎没有危害,同时得出当强夯夯击能为1.5,2.0,2.5和3.0MN.m时,其对构筑物的安全距离分别为14,17.5,18.7和19.5m。  相似文献   

17.
为了研究强夯法的加固机理和强夯过程中土体的变形规律,专门设计了半模试验箱和用于测试动应力的微型土压力盒,采用半圆形夯锤,进行强夯法加固粉土地基室内模型试验.分析夯击次数、落距、能级和锤径等参数变化时,土体内部动应力和位移的变化规律,研究各种参数变化对强夯加固效果的影响.试验结果表明:在能级一定时,单击夯沉量和影响深度随着夯击次数的增加而逐渐减小,累积夯沉量和影响深度随着夯击次数的增加而逐渐增加;在不同能级作用下,随着落距的增大,影响深度总体是在不断地减小;夯坑深度和影响深度都随着能级的增加而逐渐增大,影响深度与夯坑深度比值介于3~4之间;影响深度随着锤径的增大而减小,影响宽度则随着锤径的减小而有所增大.  相似文献   

18.
强夯法有效加固深度影响因素的理论分析   总被引:3,自引:0,他引:3  
强夯法有效加固深度是强夯实践中最为关注的问题之一,夯锤设计参数与加固地基的土性是其主要的影响因素,本文采用弹性半空间理论和瑞利波理论对强夯法有效加固深度的影响因素进行了理论分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号