首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了有效解决大采高综放工作面部分区域瓦斯超限问题,本研究采用数值模拟方法对不同层位高抽巷进行对比分析,研究沿采场垂直高度、采场走向深度及倾向长度的瓦斯流动规律及瓦斯浓度分布规律。以上隅角瓦斯浓度和抽采浓度作为判断依据,模拟分析无高抽巷、高位高抽巷、低位高抽巷三种情形下的不同区域瓦斯浓度和抽采量。结果显示,随着瓦斯扩散距离增加,瓦斯浓度逐渐升高,瓦斯的升浮-扩散效应就越明显。应用高位高抽巷和低位高抽巷后,瓦斯体积分数在回风巷侧下降率分别为22.9%~37.7%和31.8%~46.2%;其中,上隅角处瓦斯体积分数分别降低了33.4%和38.3%.此外,低位高抽巷和高位高抽巷瓦斯抽采体积分数分别为0.95%和0.41%;其中,低位高抽巷瓦斯有70.5%来源于工作面,抽采量是高位高抽巷的2.32倍。研究结果表明,低位高抽巷在大采高综放工作面上隅角及回风巷瓦斯治理中有很好的发展前景,可以有效降低上隅角瓦斯超限的风险。  相似文献   

2.
为研究高抽巷在采空区瓦斯抽采和上隅角瓦斯治理方面的应用,以及探究高抽巷抽采层位对采空区瓦斯分布规律的影响,以李阳煤矿15302综放工作面为研究对象,运用Fluent数值模拟软件对采空区未抽采和不同层位高抽巷抽采时的瓦斯分布进行模拟,通过对比瓦斯抽采浓度和上隅角瓦斯浓度的数据,分析高抽巷在不同层位的瓦斯抽采效果,将模拟结果与现场实际相结合,设计适合的高抽巷抽采层位方案,并用现场实测数据进行验证。结果表明:高抽巷瓦斯抽采浓度随抽采位置距顶板垂直高度的增加而升高,随着距回风巷水平距离的增加先升高后降低,上隅角瓦斯浓度随垂距和平距的增加均先降低后升高;理论最佳抽采层位为垂距30 m,平距32 m,工作面上隅角瓦斯浓度在0.19%以内,设计抽采层位为垂距40 m,平距35 m,工作面上隅角瓦斯浓度维持在0.63%~0.65%.选取合理的高抽巷抽采层位不仅有利于提高瓦斯抽采效果,而且能有效解决上隅角瓦斯超限的问题。  相似文献   

3.
针对高抽巷不同抽采能力抽采瓦斯时的瓦斯治理效果和可能诱发的采空区自燃问题,以某矿主采煤层工作面构建采空区气体渗流模型,利用FLUENT数值模拟软件分析了不同抽采能力下的瓦斯治理效果和采空区自燃危险性.结果表明:当高抽巷抽采能力越大时,采空区内瓦斯浓度越低,氧化升温带的宽度越大,自燃危险性越高.依据研究结论,分析得出当高抽巷的抽采能力系数(η)为0.25 ~0.3时,可防止上隅角瓦斯超限、提高瓦斯抽采率和预防采空区自燃,对高瓦斯易自燃煤层高抽巷抽采能力的选择具有一定的指导意义.  相似文献   

4.
为解决相邻两工作面上隅角瓦斯超限难题和实现高抽巷"一巷两用",提出外错高抽巷布置方式:沿上工作面回风顺槽侧,在煤层顶板内外错布置走向高抽巷;在高抽巷服务前期,在其内采用高位钻孔抽采上工作面采动卸压瓦斯;在高抽巷服务后期,直接采用高抽巷抽采下工作面采动卸压瓦斯;实现1条高抽巷服务于相邻两工作面,提高高抽巷利用效率。基于山西霍州煤田集团李雅庄煤矿2-603工作面地质条件,建立外错高抽巷围岩结构力学模型,采用理论分析、数值模拟、相似材料模拟及现场实测等研究方法系统分析工作面覆岩采动裂隙发育特征,研究覆岩采动裂隙分布规律,确定外错高抽巷和高位抽采钻孔布置参数;基于高位钻孔测斜结果,提出角度补偿纠偏方法及纠偏效果评价指标。高抽巷位于2煤层顶板25.0 m处,外错2-603工作面25.0 m;高位钻孔终孔位于顶板44.0 m处,水平及倾斜方向上的纠偏角分别为-3°和-2°。研究结果表明:高抽巷受2-603工作面采动影响较小,巷道断面能满足下区段2-605工作面抽采要求;高位钻孔终孔位置合理,高位钻孔抽采瓦斯体积分数高,且持续抽采时间长;采用角度补偿纠偏方法后钻孔瓦斯体积分数的最大值和平均值较纠偏前分别提高15.3%和11.6%,2-603工作面生产班、检修班上隅角瓦斯体积分数分别为0.504%~0.951%和0.467%~0.893%,解决了工作面隅角瓦斯超限难题,保障了工作面安全高效开采。  相似文献   

5.
李渊 《科技信息》2009,(36):254-255
本文通过对塔山矿综采工作面瓦斯治理的现场实践进行分析研究,阐述了利用工作面内错式走向顶板高抽巷解决综放工作面上隅角、后遛尾瓦斯超限的机理及办法,同时对顶板高抽巷治理工作面瓦斯超限的效果进行了验证,最终肯定了顶板高抽巷在治理塔山矿综采工作面瓦斯超限过程中的可行性和有效性。  相似文献   

6.
为解决工作面隅角瓦斯超限难题,提出了在外错高抽巷内布置高位钻孔抽采工作面覆岩采动卸压瓦斯方法。针对李雅庄煤矿2-603工作面开采技术条件,建立了高位钻孔围岩结构力学模型,采用理论分析、数值模拟分析及现场实测分析等方法,确定了外错高抽巷内高位钻孔终孔合理位置。首先,覆岩采动裂隙主要分布在上山采动角62°以内,下山采动角65°以内,距离煤层底板13~25 m和38.6~50 m等2个区域,高位钻孔终孔应布置于第二区域内。其次,高位钻孔终孔位于2煤顶板44 m处,采空区内投影长度不小于28 m时,钻孔抽采瓦斯浓度高,且持续抽采时间长。最后,工程应用效果表明,2-603工作面上隅角瓦斯浓度生产班、检修班分别为0.50%~0.95%,0.47%~0.89%,避免了隅角瓦斯超限,保障了工作面安全高效回采。  相似文献   

7.
为了探究高抽巷瓦斯抽采对工作面安全开采的影响,依据401101工作面的巷道布置情况,建立了工作面与采空区的数学物理模型。应用Fluent软件对工作面在有无高抽巷及高抽巷不同抽采能力下采空区的氧浓度以及瓦斯浓度分布规律进行了数值模拟,获得了上隅角瓦斯浓度与采空区氧浓度分布情况。模拟结果与现场实测数据表明:高抽巷能有效解决工作面上隅角瓦斯超限问题;随高抽巷抽采瓦斯能力的增大,上隅角瓦斯浓度不断降低,但采空区氧化升温带的宽度和深度会增加,使得煤自燃危险性和防灭火压力增大;综合考虑防止瓦斯超限及采空区煤自燃,并保证工作面安全开采,高抽巷瓦斯抽采能力以0.25~0.3为宜。  相似文献   

8.
内错尾巷及顶板走向长钻孔瓦斯治理试验   总被引:1,自引:0,他引:1  
针对回采工作面瓦斯涌出治理面临的通风和抽放问题,在某示范矿井2 307、3 308两个工作面分别进行了综放面内错尾巷和采空区顶板走向长钻孔技术的工业试验.通过分析两项技术的实施效果,得出内错尾巷技术和顶板走向长钻孔技术能够有效遏制上隅角瓦斯超限和工作面瓦斯涌出,减少通风负担.指出了内错尾巷试验中存在的问题,并提出了相应的尾巷布置改造建议;给出了顶板走向长钻孔抽放技术钻孔布置的合理有效的参数.最终肯定了内错尾巷、顶板走向长钻孔技术治理瓦斯的可行性.  相似文献   

9.
为获取走向高抽巷抽采瓦斯的最佳位置,构建走向高抽巷条件下的采空区瓦斯运移模型.通过FLUENT数值模拟软件分析了高抽巷与回风巷不同平距,与煤层顶板不同垂距条件下,抽采瓦斯的效果.数值模拟和现场应用结果表明:高抽巷布置在回风巷附近,与倾向断裂线边界0.46倍带宽(回风巷侧裂隙带);且位于冒落带之上,与其边界垂高2.8倍采高时,效果最好,能有效解决工作面瓦斯超限问题,保证工作面安全回采.  相似文献   

10.
为降低亭南矿204工作面上隅角及回风巷的瓦斯浓度,通过对204工作面采场瓦斯运移规律及积聚区域的研究分析,针对性地采用了上隅角埋管抽采、高位巷抽采和注氮隔离瓦斯的技术措施.实验结果表明,上隅角埋管及高位巷抽采措施的联合运用使上隅角瓦斯抽采量达到了40.98 m3/min,降低了上隅角瓦斯浓度,防止了上隅角瓦斯积聚,同时缓解了回风巷的瓦斯压力.注氮隔离瓦斯技术在工作面方向形成一个瓦斯隔离带,阻止了采空区瓦斯进入采煤工作面,降低了采煤工作面的瓦斯浓度,亭南矿204工作面瓦斯治理措施的实施成功地防止了瓦斯事故的发生,确保了矿井的安全生产.  相似文献   

11.
采空区瓦斯抽采与煤自燃防控相互影响,工作面配风量、抽采负压和高抽巷位置等参数影响了采空区自燃危险区域范围。通过在天池矿301工作面采空区内布置监测点并分析气体变化,确定了采空区瓦斯与煤自燃灾害协同防控的关键区域。结合瓦斯抽采和采空区煤自燃的耦合作用机制,采用数值模拟和现场实测方法确定了工作面配风量、高抽巷位置以及推进度等主要关键参数。研究结果表明:当工作面配风量为3 000~3 500 m3/min,推进度为1.39~6.84 m/d,高抽巷与顶板垂距为30 m,与回风巷平距为25 m,抽采负压为14.5~17.5 k Pa时,既能确保抽采效果,也可有效地防止采空区煤自燃。  相似文献   

12.
采煤工作面上隅角和回风巷瓦斯超限的问题,严重制约煤矿的安全生产。采用理论分析、数值模拟和现场验证相结合的研究方法,结合山西潞安集团某矿S2107综放面的实际情况,对走向高抽巷参数优化进行系统的分析研究。结果表明:在裂隙带发育高度理论分析计算和数值模拟研究的基础上,确定S2107综放面高抽巷的最优层位高度为34.06~40.37 m,最优平距为距回风巷平行距离30~40 m的位置,在S2107综放面实施高抽巷后,工作面的上隅角和回风巷瓦斯浓度明显降低,可以保障S2107综放面的安全高效生产,同时验证了理论计算和数值模拟的正确性。  相似文献   

13.
针对高瓦斯综采工作面瓦斯含量高、瓦斯涌出量大、开采强度大等特点,提出在回采巷道掘进和工作面回采过程中进行瓦斯立体抽采的治理方法,巷道掘进期间通过底抽巷穿层钻孔与掘进工作面顺层钻孔形成立体抽采系统;工作面回采期间利用底抽巷穿层抽采、工作面顺层抽采和高抽巷组成立体抽采系统,确定了瓦斯立体抽采的主要技术参数;结合赵庄煤矿1307工作面实际的地质条件和开采条件,进行了瓦斯立体抽采试验.研究结果表明:瓦斯立体抽采大幅度降低了工作面的瓦斯含量,瓦斯抽排率达到69.28%,瓦斯抽采效果显著,是一种良好的瓦斯治理方法,实现了工作面掘进和回采期间的安全生产.  相似文献   

14.
瓦斯抽采是从根本上治理煤矿瓦斯灾害的主要手段,由于其高效和安全的特性,高位钻场瓦斯抽采模式在现场应用日益广泛,但对于抽采参数的测评和优化却没有统一标准。本文分析了采煤工作面围岩裂隙场的分布特性与瓦斯抽采设计参数的相互关系,以现场高位钻孔瓦斯抽采实测数据为基础,采用四种方法对设计参数和抽采效果进行关联性分析,结果表明钻孔垂距、钻孔平距和钻场间距是影响瓦斯抽采效果的主要参数,在其优化区间内,瓦斯抽采效果会大幅度提高。论文研究结果对优化瓦斯抽采设计、保障采煤工作面安全生产具有一定参考意义。  相似文献   

15.
钻孔预抽煤层瓦斯是目前治理矿井瓦斯的主要措施。以瓦斯渗流理论为基础,以钻孔抽采周围流场为径向流场,建立了钻孔周围瓦斯流动数学方程;并结合鹤煤九矿3104工作面具体抽采条件,利用COMSOL Multiphysics软件对钻孔预抽煤层瓦斯在不同抽采时间、不同抽采负压和不同钻孔直径下周围瓦斯压力分布进行数值模拟。并将上述模拟结果确定的抽采钻孔布置参数在3104采煤工作面进行煤层瓦斯预抽实践;抽采后经效果检验,残余瓦斯压力、残余瓦斯含量等均与《煤矿瓦斯抽采基本指标》中的相关规定相符合,3104工作面已经消除了煤与瓦斯突出的危险性。  相似文献   

16.
本研究首先对塔山煤矿8104综放面的瓦斯抽放必要性和可行性进行了分析,结果显示,该工作面需要进行瓦斯抽放,而且,不具备本煤层瓦斯预抽条件。提出了解决该工作面邻近层及采空区瓦斯涌出的三种方案,即上隅角抽采、顶板巷自然引排和顶板巷抽采;然后,采用数值模拟手段对这三种方案条件下的瓦斯运移规律进行研究,得出了相应的工作面及采空区压力分布、空气速度分布及瓦斯浓度分布图。研究结果显示,采用上隅角瓦斯抽采和顶板巷密闭抽采后,虽然可以大幅度降低上隅角瓦斯浓度,但是,容易导致采空区遗煤自燃;采用顶板巷自然引排瓦斯后,也基本上能够解决上隅角瓦斯问题,但是,采场瓦斯浓度容易超限。因此,建议该工作面采用顶板巷自然引排和喷洒活性剂相结合的措施来治理瓦斯,既可有效防止上隅角瓦斯超限,又可最大限度降低对采空区自然发火的影响。  相似文献   

17.
针对高瓦斯突出煤层工作面上隅角瓦斯易超限的技术难题,以邹庄矿3204工作面为工程背景,利用数值模拟、理论分析、现场实测的研究方法,对采空区埋管及无埋管条件下工作面及采空区瓦斯分布规律进行了研究。结果表明:采空区埋管增加了上隅角瓦斯流动的通道,分流了采空区及工作面涌出的部分瓦斯,降低了上隅角及回风巷瓦斯浓度。据此,提出了采空区埋管为主,高位钻场抽采为辅的采空区瓦斯治理方案,现场实测验证了工作面高位钻场布置层位的合理性。工业性试验表明:采空区埋管为主,高位钻场抽采为辅的采空区瓦斯治理方案对实现采空区瓦斯治理具有积极意义。  相似文献   

18.
针对具有软煤分层的突出煤体,为了更加准确地检验瓦斯抽采效果,必须研究瓦斯抽采后软、硬煤残余瓦斯含量之间的差异性.基于抽采条件下的瓦斯渗流场分析,考虑了煤层中存在软煤条件下对瓦斯流动及煤层的综合影响,通过建立瓦斯流固耦合方程,并结合钻孔抽采瓦斯的初始条件和边界条件,运用多物理场耦合分析软件模拟了抽采条件下软、硬煤的残余瓦斯含量的差异性.数值模拟结果表明:在相同的抽采时间内,软煤的残余瓦斯含量始终高于硬煤,软煤瓦斯含量降到8 m3/t需要180 d,硬煤瓦斯含量降到8 m3/t需要162 d.  相似文献   

19.
针对朱家店矿101综放工作面采空区瓦斯埋管抽采能效控制工作面瓦斯涌出量,但同时也会引起采空区遗煤自燃加速的问题.采用理论分析与数值模拟相结合的方法,以煤层瓦斯流动理论为基础,通过COMSOL数值模拟软件分析在不同抽采口位置时,采空区自燃"三带"的变化情况及瓦斯浓度分布情况,最终确定合理的抽采口位置.研究结果表明:随着抽采口远离工作面,氧化带宽度逐渐增大,采空区最大瓦斯浓度则先降低后增加;结合现场实际,当抽采流量为25 m3/min时,最佳的埋管抽采抽采口位置为距工作面40~50 m处.  相似文献   

20.
为防止遗煤自燃,结合山西某矿9101工作面实际,在抽采负压分别为0、8、12、160、20、24 k Pa时,利用计算流体力学软件Fluent,进行数值模拟。结果表明:不同抽采负压对采空区的漏风流场分布及采空区的漏风量均有显著影响。在回风侧采空区其受到高抽巷的影响比进风侧采空区大,导致工作面漏风风速在回风侧差别较大;不同抽采负压条件下采空区自燃带宽度均为中部>进风巷侧>回风巷侧。抽采负压为12 k Pa时,采空区自燃带宽度平均值为87 m,为自燃带宽度曲线的"凹点"。12 k Pa为临界点,临界点之前抽采瓦斯纯量增速较快,临界点之后抽采瓦斯纯量增速缓慢。综合考虑高抽巷抽采瓦斯纯量和采空区自燃带宽度,9101工作面高抽巷抽采负压确定为12 k Pa左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号