首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
轴向柱塞泵滑靴副间隙泄漏及摩擦转矩特性   总被引:1,自引:0,他引:1  
探讨了在不同柱塞腔压力、缸体转速和滑靴重心与球窝中心所组成的离心力臂作用下滑靴副间隙泄漏以及摩擦转矩的变化过程.结果表明:柱塞腔压力、缸体转速以及滑靴的离心力臂与其所受的正向压紧力、动压效应以及离心力矩密切相关,它们是影响滑靴副泄漏流量的重要参数;滑靴的摩擦力矩随泄漏流量的增大而增大.液压泵的实际泄漏流量和摩擦转矩损失随柱塞腔压力和缸体转速增大而增大,由于考虑配流副和柱塞副的泄漏与摩擦转矩损失,其实际测试结果较大;滑靴在泵的容积效率和机械效率损失方面所占的比重较小.  相似文献   

2.
轴向柱塞泵滑靴副间隙油膜热力学特征   总被引:1,自引:0,他引:1  
采用控制体方法根据能量守恒定律推导并建立了集中参数的轴向柱塞泵滑靴副间隙油膜热力学模型,求解了间隙油膜的瞬时温度.结果表明:滑靴副的轴功损失与柱塞腔压力和缸体转速呈正相关,且轴功损失转化为热能;增加油液内能,引起油膜温度升高,改变了滑靴副与油膜之间的传热速率.滑靴材料选用多元复杂黄铜,其导热率大,热阻较小,起到了良好的散热和耐磨效果.  相似文献   

3.
轴向柱塞泵滑靴油膜动态仿真   总被引:5,自引:3,他引:2  
对轴向柱塞泵滑靴润滑油膜的动态规律进行了数学建模,给出了缸体旋转一周,滑靴润滑油膜随缸体转角的变化.分析了滑靴润滑油膜与缸体转速及柱塞腔压力之间的变化规律.仿真结果表明:由转速所带来的动压效应对滑靴润滑油膜厚度影响较大.而离心力则显著影响滑靴的倾斜姿态,在离心力的倾覆力矩作用下,滑靴将沿径向向外倾斜,并且随着转速的提高倾斜程度加剧.  相似文献   

4.
轴向柱塞泵滑靴副功率损失特性   总被引:1,自引:0,他引:1  
为降低轴向柱塞泵滑靴副功率损失,考虑油液的压差和剪切流动的影响,建立滑靴副的功率损失模型,讨论泵的柱塞腔压力、主轴转速以及结构参数对滑靴的泄漏流量、摩擦力矩、泄漏功率损失以及黏性摩擦功率损失的影响。研究结果表明:滑靴副的功率损失以黏性摩擦为主,摩擦力矩比较大,而泄漏流量比较小。主轴转速对黏性摩擦功率损失的影响占据主导地位,大于柱塞腔压力的影响;当滑靴的半径比为1.5~2.0时,应尽量取较小值,有利于降低滑靴副的泄漏和黏性摩擦功率损失;当阻尼管的长度直径比为3.50~8.75时,阻尼孔直径不宜设计太小,尽管阻尼管的长度直径比变大对泄漏功率损失产生抑制作用,但是油膜厚度变薄将会增加黏性摩擦功率损失。  相似文献   

5.
为了分析柱塞副偏心状态对油膜特性的影响,采用动压支承理论和数值模拟方法,研究在不同柱塞腔压力和缸体转速时柱塞副油膜形态及其变化规律,采用寿命试验台测试液压泵试验件并与理论结果进行对比验证.结果表明:柱塞偏心状态下,柱塞副油膜出现最小厚度值,油膜内部压力高于柱塞腔压力;压油区油膜厚度随压力增加而线性增加,随转速增加而减小,但转速越大,油膜厚度减少量越小,柱塞转过90°时油膜厚度达到最小值;吸油区最小油膜厚度几乎不随转速变化,且吸油区最小油膜厚度小于压油区油膜厚度;柱塞副最小油膜厚度出现位置与斜盘摩擦力方向一致.  相似文献   

6.
斜盘式轴向柱塞泵磨损与润滑分析   总被引:2,自引:0,他引:2  
摩擦与润滑直接影响着斜盘式柱塞泵的使用寿命,为延长其正常运行时间应尽量降低运行中存在的磨损.根据斜盘式柱塞泵的工作原理,其磨损主要存在于柱塞和缸体孔、滑靴与斜盘、缸体和配流盘三对摩擦副中,它们是影响柱塞泵工作性能和寿命的重要因素.着重分析了摩擦副之间磨损状况的影响因素,提出了几点相应的改进措施.  相似文献   

7.
为研究轴向柱塞泵中引入铜套后柱塞滑靴组件上作用力的变化,建立了柱塞滑靴组件的动力学模型和柱塞副接触长度的数学模型,利用AMESim和MATLAB数值仿真相结合的方法,得到作用在柱塞滑靴组件上的斜盘反作用力及其等效接触力的特性曲线.分析结果表明:引入铜套后,处于排油区的等效接触力将稳定在一定范围内,且斜盘倾角越大,铜套越短,等效接触力的稳定值越大;同时铜套还能有效降低等效接触力的脉动和对斜盘倾角的敏感度,但是对斜盘反力的影响很小,所以合理地设计铜套能有效改善柱塞滑靴组件的受力.  相似文献   

8.
斜盘是双侧驱动轴向柱塞马达实现液压力平衡的关键零部件之一,能否合理设计斜盘结构对整个马达的性能有很大的影响。基于双侧驱动轴向柱塞马达,引入了新型斜盘结构,分析了柱塞及滑靴运动轨迹对斜盘尺寸的影响。结果表明:各个斜盘斜面的倾角、各排柱塞直径及分布圆直径、滑靴相关尺寸等对斜盘尺寸都有一定的影响,以此为基础采用新的设计方法对斜盘进行设计,并通过实例计算与校核证明该设计方法有效。该研究可为双侧驱动轴向柱塞马达结构设计提供指导。  相似文献   

9.
轴向柱塞泵滑靴副动压承载特性研究   总被引:1,自引:0,他引:1  
对轴向柱塞泵滑靴副稳态工况下动压承载规律展开了理论和试验研究,考虑了滑靴所受离心力等倾覆力矩的影响,结合了滑靴实际受力情况,建立了稳态工况下滑靴副摩擦动力学模型,研究了滑靴底面油膜动压承载规律.结果表明,滑靴与斜盘之间总是形成楔形收敛间隙,有利于滑靴副动压油膜的形成,滑靴倾斜方位角基本稳定在170°左右.试验结果较好地验证了仿真结果.   相似文献   

10.
基于虚拟样机的轴向柱塞泵柱塞副仿真分析   总被引:2,自引:0,他引:2  
采用虚拟样机技术对轴向柱塞泵柱塞副进行仿真分析,介绍虚拟样机子模型,通过软件接口实现子模块之间数据传递,实现柱塞副仿真模型的液固耦合和刚柔耦合;建立试验平台,通过试验测试结果验证模型的正确性,证明轴向柱塞泵虚拟样机仿真平台对轴向柱塞泵设计有很强的指导作用.仿真分析柱塞泵负载压力等级、斜盘倾角以及柱塞副间隙对柱塞副性能的影响,表明柱塞副设计是限定轴向柱塞泵压力等级和最大斜盘倾角的重要因素,适当减小间隙油膜厚度可以降低柱塞副泄露损失和摩擦损失,并有助于提高柱塞副油膜承载能力.  相似文献   

11.
SiC材料导热系数和热膨胀系数与温度关系   总被引:3,自引:0,他引:3  
研究冷等静压SiC材料导热系数和热膨胀系数与温度的关系。结果表明,SiC材料导热系数(λ)与温度(T)成反比,其线膨胀系数(a)与温度成正比。从理论上探讨了提高其热稳定性的途径;给出了SiC材料导热系数和线膨胀系数与温度之间的关联式,为高温陶瓷换热器的设计及应用提供科学依据。  相似文献   

12.
为了提高低速大扭矩水压马达的容积效率,定量分析了水黏度对柱塞副泄漏流量损失的影响。首先根据水压马达实际运行状态确定了柱塞副的初始设计参数和水的性能参数,计算了定黏度下不同间隙、不同偏心距时的柱塞副泄漏流量。然后基于温升与压降的关系、黏温方程、黏压方程及流量方程,建立了变黏度条件下,水压马达在低速及高速情况下,柱塞副与转子缸孔同心及偏心时,柱塞副泄漏流量损失的数学模型。最后以环形间隙大小、偏心距和压差作为柱塞副的性能指标,详细分析了水的黏度对柱塞副泄漏流量的影响。研究表明:低速同心下,增大间隙2~10μm,减小水黏度,柱塞副的最大泄漏流量由0.002L/min增大至0.250 3L/min;高速同心下,柱塞副的最大泄漏流量由0.020 4L/min增大至0.261 1L/min。低速偏心下,增大偏心距1~4μm,减小水黏度,柱塞副的最大泄漏流量由0.017 5L/min增大至0.040 1L/min;高速偏心下,柱塞副的最大泄漏流量由0.021 9L/min增大至0.044 4L/min。因此,减小柱塞转子副的间隙,减小偏心距,增大水的黏度,柱塞副的泄漏流量降低,马达的容积效率提高。  相似文献   

13.
为了研究高压共轨喷油器柱塞副的动态泄漏特性,建立了柱塞副间隙燃油流动的数学模型,通过有限差分法对数学模型进行数值计算,研究了不同轨压下柱塞副燃油的平均动态泄漏率的变化趋势,与试验值进行对比,验证该数学模型的有效性,并分析了轨压、进口燃油温度、柱塞最大升程和喷射脉宽四种因素对柱塞副动态泄漏量的影响及在不同柱塞速度下,油膜压力、厚度和温度参数的变化趋势。结果表明,在一个喷油循环内,动态泄漏率的变化曲线与控制腔油压变化曲线相似,平均动态泄漏率随着喷油器的轨压、入口燃油温度和柱塞最大升程的增加而增加,但随着喷射脉宽的增加而减小;随着柱塞速度由正速度到负速度的过程,油膜的厚度逐渐变薄,油膜的温度整体上升,油膜的压力变小。  相似文献   

14.
为了预测液黏离合器的温度场分布及热负荷特性,通过数值模拟研究求得摩擦副散热面的对流换热系数。应用计算流体动力学软件CFX建立了摩擦副流固耦合有限元模型,获得了摩擦副的温度场分布,综合考虑换热表面形状、摩擦片转速、油液流速和入口压力、流体物理性质等因素,揭示了各因素与对流换热系数之间的内在联系。结果表明:摩擦副温度从内径到外径逐渐升高,菱形区域中心温度比四周高。摩擦片转速越大对流换热系数越大;油液黏度越小,入口压力越大,对流换热系数越大。可见,油液流速对换热系数的影响最为显著;摩擦片转速、油液的入口压力和黏度会改变流速及流体的运动状态,从而影响对流换热系数。  相似文献   

15.
柱塞副间隙的泄漏是影响柱塞泵容积效率的主要因素,超高压工况下柱塞副微米间隙的热-压形变不可忽略.利用流-固-热耦合方法,建立柱塞副压形变主导模型和热-压耦合形变模型,对单边间隙高度5μm的柱塞副二维轴对称模型中的压差流动进行仿真计算.结果表明:当柱塞副入口压力为110 MPa时,在间隙入口受压形变占主导,单边间隙增大4...  相似文献   

16.
为获得螺旋摆动液压缸的润滑特性,在分析其结构和工作原理的基础上,设计7种不同径向间隙的螺旋副,使用Pro/E软件建立螺旋摆动液压缸内部流动油膜数学模型:利用Gambit 2.3.16进行结构化六面体/楔形网格划分后导入Fluent 6.3.26中,采用层流模型和SIMPLE算法,对不同径向间隙螺旋副内油膜三维流场和同一间隙不同偏心距下的螺旋流动特性进行模拟,得到螺旋副内部压力场以及承载力、刚度、最高温度、流量与间隙之间的关系.研究结果表明:螺旋副在径向间隙为0.10mm时性能最佳:为获得较大的承载性能,同一半径间隙,制造条件允许且能形成流体动压润滑条件下应选择较大的偏心距:当缸体和空心螺杆的表面粗糙度分别为3.2um和1.6μm,最小膜厚大于9μm时,能够形成良好的流体动力润滑.  相似文献   

17.
热失效是混合动力汽车湿式离合器发生故障的主要原因之一。摩擦副滑摩过程中具有高度非线性,同时摩擦副温度场受到多个参数影响。为深入研究混合动力汽车离合器摩擦副温度场分布情况,通过搭建混合动力汽车离合器热结构耦合分析模型,对滑摩过程进行仿真计算。在此基础上,深入研究初始转速、接合油压、对偶钢片厚度和摩擦衬片材料等因素对摩擦副温度场的影响。  相似文献   

18.
发动机活塞与气缸的配缸间隙是极为重要的技术参数,如果间隙太大,会引起密封不良(漏气、窜油)、动力下降;太小则会使活塞裙部没有膨胀的余地,接触压力超过活塞和气缸之间的油膜所能承受的挤压强度(一般4.9~9.8 MPa),润滑油膜将被破坏,引起粘着磨损(拉缸)故障。从发动机研发阶段直至其生产制造过程中都需稳定控制气缸盖装配前后的缸孔变形量,这对发动机的整机性能的稳定发挥及提升工作具有极其重要的作用。  相似文献   

19.
本文采用方向余弦矩阵系统地分析了滑靴的运动规律,推导出决定滑靴底面压力场方程,并考虑了挤压效应、动压效应、热楔效应。实测了滑靴在实际工况下油膜动特性和理论值相吻合。本文的研究方法对进一步改善滑靴设计奠定了基础。  相似文献   

20.
摘要:本文在建立湿式离合器摩擦片与钢片间油膜计算模型的基础上,综合考虑湿式离合器润滑油ATF在工作情况下的粘温特性及油膜变化对离合器特性的影响,运用动网格技术定义粘度随温度的变化,以一对摩擦副为模拟研究对象,建立实际油路的有限元模型,并在定常、层流下,运用UDF定义粘度随温度变化特性,运用FLUENT采用动网格计算,然后处理分析ATF润滑油对入口温度对湿式离合器带排转矩的的影响,,得到摩擦片表面的压力、速度分布图,根据摩擦片表面的压力分布图来研究摩擦片表面油膜变化规律,得出湿式离合器带排转矩随转速差的增加先成正比增加然后减少,最后在自主研发的离合器综合试验台上试验验证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号