首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Intronic point mutations are rare and totally unknown for human laryngeal squamous cell carcinoma (LSCC). To explore the relationship of p53 gene intronic mutation to the development of human LSCC, DNA was extracted from both tumor tissues and matched normal tissues of 55 patients with LSCC in northeast of China. Polymerase chain reaction amplification-single strand conformational polymorphism (PCR-SSCP) combined with silver staining and DNA direct sequencing were used to detect mutations in exons 7~8 (p53E7 and p53E8) and introns 7~8 (p53I7 and p53I8) of p53 gene. The p53E7 mutation was detected in 17 out of 55 patients, and the p53I7 mutation in 21 patients. No mutation was found at p53E8 or p53I8 site. The difference between tumor group and paired normal group on the rates of both p53E7 and p53I7 mutations was statistically significant. The rate of p53I7 mutations in tumor tissue was higher than that of normal tissue, and so was that of p53E7. Sequence analysis revealed that most p53I7 mutations were at the nucleotides in the branch point sequence or the polypyrimidine tract in the 3′-splice acceptor site of the intron 7. The high incidence of p53 gene intronic mutation in LSCC indicates that genetic changes within the noncoding region of the p53 gene may serve as an alternative mechanism of activating the pathogenesis of human laryngeal squamous cell carcinoma. Mutations in the noncoding region of this gene should be further studied.  相似文献   

2.
Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis.   总被引:39,自引:0,他引:39  
The cyclin-dependent kinase inhibitor p16INK4a can induce senescence of human cells, and its loss by deletion, mutation or epigenetic silencing is among the most frequently observed molecular lesions in human cancer. Overlapping reading frames in the INK4A/ARF gene encode p16INK4a and a distinct tumour-suppressor protein, p19ARF (ref. 3). Here we describe the generation and characterization of a p16Ink4a-specific knockout mouse that retains normal p19Arf function. Mice lacking p16Ink4a were born with the expected mendelian distribution and exhibited normal development except for thymic hyperplasia. T cells deficient in p16Ink4a exhibited enhanced mitogenic responsiveness, consistent with the established role of p16Ink4a in constraining cellular proliferation. In contrast to mouse embryo fibroblasts (MEFs) deficient in p19Arf (ref. 4), p16Ink4a-null MEFs possessed normal growth characteristics and remained susceptible to Ras-induced senescence. Compared with wild-type MEFs, p16Ink4a-null MEFs exhibited an increased rate of immortalization, although this rate was less than that observed previously for cells null for Ink4a/Arf, p19Arf or p53 (refs 4, 5). Furthermore, p16Ink4a deficiency was associated with an increased incidence of spontaneous and carcinogen-induced cancers. These data establish that p16Ink4a, along with p19Arf, functions as a tumour suppressor in mice.  相似文献   

3.
L F Parada  H Land  R A Weinberg  D Wolf  V Rotter 《Nature》1984,312(5995):649-651
The protein p53 is highly expressed in a large variety of transformed cell types originating from diverse species. These include cells transformed by Simian virus 40 (SV40), adenovirus and Abelson virus, as well as a variety of chemically transformed cells. Substantial amounts of p53 are also present in certain non-transformed cells, for example, some embryonic tissues. The protein may be localized in different cellular compartments in normal and transformed cells. The strong correlation between tumorigenicity and high levels of p53 suggests an important role of p53 in tumorigenesis. We report here experiments in which we have co-transfected the murine cellular gene encoding for p53 with a ras gene into primary rat embryo fibroblasts. Our results indicate that the p53-encoding gene can play a causal role in the conversion of normal fibroblasts into tumorigenic cells.  相似文献   

4.
目的:检测头颈部鳞癌患者p53基因突变、mdm2基因扩增的状况,了解其与头颈部鳞癌患者的性别、鳞癌分级、淋巴结转移等的相关性及两异常基因的相关性。方法:收集50例行手术切除的头颈部鳞癌患者的新鲜肿瘤组织及其相应的癌旁正常组织,提取标本DNA;用PCR-SS-CP-银染法检测p53基因第5~8外显子的突变状况;用dPCR法检测mdm2基因扩增情况;采用SPSS 10.0统计软件包行2检验分析实验结果。结果:在50例头颈部鳞癌患者标本中,检测出17例存在p53基因突变,突变率为34%,所有的癌旁正常组织未发现p53基因突变;在50例鳞癌标本中检测出6例标本存在mdm2基因扩增,扩增率为12%,其中有一例同时存在p53基因突变;p53基因突变、mdm2基因扩增与患者的鳞癌分级、淋巴结转移、性别等相关性分析结果均无统计学意义(P>0.05)。结论:p53基因突变与mdm2基因扩增在头颈部鳞癌中较常见,可能是头颈部鳞癌发生发展的主要分子机制。  相似文献   

5.
Human p53 gene localized to short arm of chromosome 17   总被引:7,自引:0,他引:7  
The p53 gene codes for a nuclear protein that has an important role in normal cellular replication. The concentration of p53 protein is frequently elevated in transformed cells. Transfection studies show that the p53 gene, in collaboration with the activated ras oncogene, can transform cells. Chromosomal localization may provide a better understanding of the relationship of p53 to other human cellular genes and of its possible role in malignancies associated with specific chromosomal rearrangements. A recent study mapped the human p53 gene to the long arm of chromosome 17 (17q21-q22) using in situ chromosomal hybridization. Here, by Southern filter hybridization of DNAs from human-rodent hybrids, we have localized the p53 gene to the short arm of human chromosome 17.  相似文献   

6.
Tumorigenesis is a multi-step process that requires activation of oncogenes and inactivation of tumour suppressor genes. Mouse models of human cancers have recently demonstrated that continuous expression of a dominantly acting oncogene (for example, Hras, Kras and Myc) is often required for tumour maintenance; this phenotype is referred to as oncogene addiction. This concept has received clinical validation by the development of active anticancer drugs that specifically inhibit the function of oncoproteins such as BCR-ABL, c-KIT and EGFR. Identifying additional gene mutations that are required for tumour maintenance may therefore yield clinically useful targets for new cancer therapies. Although loss of p53 function is a common feature of human cancers, it is not known whether sustained inactivation of this or other tumour suppressor pathways is required for tumour maintenance. To explore this issue, we developed a Cre-loxP-based strategy to temporally control tumour suppressor gene expression in vivo. Here we show that restoring endogenous p53 expression leads to regression of autochthonous lymphomas and sarcomas in mice without affecting normal tissues. The mechanism responsible for tumour regression is dependent on the tumour type, with the main consequence of p53 restoration being apoptosis in lymphomas and suppression of cell growth with features of cellular senescence in sarcomas. These results support efforts to treat human cancers by way of pharmacological reactivation of p53.  相似文献   

7.
Mutations in the p53 gene occur in diverse human tumour types   总被引:196,自引:0,他引:196  
The p53 gene has been a constant source of fascination since its discovery nearly a decade ago. Originally considered to be an oncogene, several convergent lines of research have indicated that the wild-type gene product actually functions as a tumour suppressor gene. For example, expression of the neoplastic phenotype is inhibited, rather than promoted, when rat cells are transfected with the murine wild-type p53 gene together with mutant p53 genes and/or other oncogenes. Moreover, in human tumours, the short arm of chromosome 17 is often deleted. In colorectal cancers, the smallest common region of deletion is centred at 17p13.1; this region harbours the p53 gene, and in two tumours examined in detail, the remaining (non-deleted) p53 alleles were found to contain mutations. This result was provocative because allelic deletion coupled with mutation of the remaining allele is a theoretical hallmark of tumour-suppressor genes. In the present report, we have attempted to determine the generality of this observation; that is, whether tumours with allelic deletions of chromosome 17p contain mutant p53 genes in the allele that is retained. Our results suggest that (1) most tumours with such allelic deletions contain p53 point mutations resulting in amino-acid substitutions, (2) such mutations are not confined to tumours with allelic deletion, but also occur in at least some tumours that have retained both parental 17p alleles, and (3) p53 gene mutations are clustered in four 'hot-spots' which exactly coincide with the four most highly conserved regions of the gene. These results suggest that p53 mutations play a role in the development of many common human malignancies.  相似文献   

8.
9.
Most human tumours have genetic mutations in their Rb and p53 pathways, but retinoblastoma is thought to be an exception. Studies suggest that retinoblastomas, which initiate with mutations in the gene retinoblastoma 1 (RB1), bypass the p53 pathway because they arise from intrinsically death-resistant cells during retinal development. In contrast to this prevailing theory, here we show that the tumour surveillance pathway mediated by Arf, MDM2, MDMX and p53 is activated after loss of RB1 during retinogenesis. RB1-deficient retinoblasts undergo p53-mediated apoptosis and exit the cell cycle. Subsequently, amplification of the MDMX gene and increased expression of MDMX protein are strongly selected for during tumour progression as a mechanism to suppress the p53 response in RB1-deficient retinal cells. Our data provide evidence that the p53 pathway is inactivated in retinoblastoma and that this cancer does not originate from intrinsically death-resistant cells as previously thought. In addition, they support the idea that MDMX is a specific chemotherapeutic target for treating retinoblastoma.  相似文献   

10.
p63 is a p53 homologue required for limb and epidermal morphogenesis   总被引:100,自引:0,他引:100  
Mills AA  Zheng B  Wang XJ  Vogel H  Roop DR  Bradley A 《Nature》1999,398(6729):708-713
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号