首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
大体积混凝土由于体积比较大,水泥在固化过程中会释放出较大的水化热,如果在施工过程中不加以注意和控制,很容易造成混凝土内外温差过大,从而使混凝土产生温度裂缝,危及到混凝土结构的安全性与耐久性.因此,对混凝土温度裂缝加以研究和控制是必要的.本文主要分析了大体积混凝土温度裂缝产生的机理和影响裂缝发展的各种因素,研究了温度裂缝控制的措施,参照了已有的大体积混凝土的温度应力计算及预测方法,从混凝土配合比设计、施工过程监测等方面提出了减少大体积混凝土温度裂缝的有效控制方案.  相似文献   

2.
大体积混凝土施工中温度裂缝的控制   总被引:4,自引:1,他引:3       下载免费PDF全文
收缩应力及温度应力是大体积混凝土产生裂缝的主要原因.首先对大体积混凝土的温度裂缝控制进行了探讨,并在工程实际中加以实践.  相似文献   

3.
为了使桥梁大体积混凝土温度裂缝得到有效控制,针对桥梁大体积混凝土工程的特点,通过对桥梁大体积混凝土温度裂缝产生的机理分析研究,认为由混凝土内外温差、自身约束和外部约束共同作用产生的温度应力是形成桥梁大体积混凝土温度裂缝的主要原因,并从设计和施工两个方面提出了控制措施。最后,对温度裂缝的处理提出了对策。  相似文献   

4.
大体积混凝土结构施工中,由于水泥水化热引起混凝土浇注内部温度和温度应力剧烈变化,由此而产生的温度应力是导致混凝土产生裂缝的主要原因。本文以金水沟特大桥为例针对裂缝成因对大体积混凝土温度裂缝控制的施工措施进行了讨论及分析。  相似文献   

5.
大体积混凝土温度裂缝控制的实例   总被引:1,自引:0,他引:1  
大体积混凝土结构施工中,由于水泥水化热引起混凝土浇注内部温度和温度应力剧烈变化,由此而产生的温度应力是导致混凝土产生裂缝的主要原因.文章针对工程实例,对大体积混凝土裂缝的产生原因进行分析,并通过理论计算以及从设计材料和施工等方面提出了一套优化的温控方案,在工程中取得了较好的效果.  相似文献   

6.
徐杰志 《中国西部科技》2009,8(19):42-42,38
混凝土的温度裂缝对水利水电工程有相当程度的危害性,应采取有效的工程措施防止大体积混凝土的温度裂缝产生,保证工程质量,分析混凝土温度裂缝的产生,控制混凝土内部的温度变化,减小温度应力是预防大体积混凝土产生裂缝的有效方法。  相似文献   

7.
大体积混凝土结构,由于水泥水化过程中释放的水化热引起的温度变化和混凝土收缩产生的温度应力及收缩应力,是其产生裂缝的主要原因,而大体积混凝土的内部温升,又可视为强化水泥硬化、充分利用其活性的能源.因而在大体积混凝土施工中采取减少水泥用量,控制温差应力,稳定其体积,辅之以水冷却及其他措施,可以有效地控制温度应力和温度变形裂缝的扩展,取得较好的技术经济效果.  相似文献   

8.
介绍了大体积混凝土的含义及产生裂缝的原因,推导出在不同的条件下,大体积混凝土结构的温度应力和裂缝间距的计算公式。由此,讨论了在不同的温度条件下的应力状态和温度裂缝的分类,并提出了防治大体积混凝土结构裂缝出现的有效措施。  相似文献   

9.
柳坤  郑海庆 《科技资讯》2010,(19):118-118
本文通过工程实例对大体积混凝土温度应力形成和温度裂缝产生过程的分析,有针对性地提出了在施工过程中控制温度裂缝产生的技术措施,有效地控制了温度裂缝的产生,进而提高大体积混凝土的抗开裂性能和耐久性。  相似文献   

10.
形成大体积混凝土温度裂缝的原因有内部约束应力和外部约束应力两种情况.当内外温度差大于25℃时,表面混凝土抗拉强度抵挡不住这种应力,就会产生表面裂缝.泵送混凝土由于水泥用量多、单位用水量大、砂率高和掺化学外加剂等特点,使混凝土干燥收缩,产生裂缝的几率增大.对此提出UEA补偿收缩混凝土的无缝设计施工方法,实施结果表明,该方法对控制高强度、大流动性条件下的大体积泵送混凝土温度裂缝是有效可靠的,其他种类的水工大体积混凝土的温度控制与裂缝预防也可借鉴此方法.  相似文献   

11.
大体积混凝土因早期水化热引起的温度场 会导致开裂, 影响结构安全和正常使用, 其中混凝土热学参数的准确性会直接影响混凝土温度场计算的准确性. 从胶凝材料水化反应机理出发, 基于化学反应动力学原理及不同矿物组成的水泥水化热实验数据, 提出了一种考虑粉煤灰掺入和温度影响的混凝土水化放热模型. 该模型可以准确地反映混凝土水化放热量及温升随龄期的变化, 且与实测值吻合良好.  相似文献   

12.
以一座中承式钢管混凝土拱桥为背景,利用MIDAS有限元软件对拱脚承台的大体积混凝土水化热进行计算分析.通过对主要水化热影响参数的分析,得到了最优水化热施工控制方式,采用全面分层法一次浇筑工艺,有效避免了大体积混凝土施工过程中水化热温度控制不理想、混凝土开裂的风险,缩短了施工周期,提高了经济效益.  相似文献   

13.
大体积混凝土施工的技术关键是降低胶凝材料的水化热,以降低混凝土的绝热升温,减少混凝土内外温差,控制温度应力,从而达到控制混凝土开裂的目的。以无锡市红星桥工程为例,从混凝土材料优选、施工及布设冷却管等方面入手,对有效地控制混凝土内外温差进行了分析,详细介绍了冷却管在大体积混凝土施工中的要点。  相似文献   

14.
基于神经网络的大体积混凝土温度预测与控制   总被引:1,自引:1,他引:0  
大体积混凝土的水化热若不能及时散发 ,会产生很大的温度应力 ,导致出现温度裂缝。为了避免温度裂缝的产生 ,人们必须预测和控制大体积混凝土的温度形成。文章引用“虚厚度”的概念 ,解决了不同边界条件的处理问题 ,通过对各种影响因素的分析并结合 BP神经网络模型的特点提出了大体积混凝土温度预测模型。通过工程实例 ,用 MATL AB语言实现了对大体积混凝土温度的预测 ,说明了人工神经网络方法的可行性和实用性  相似文献   

15.
早龄期混凝土结构的温度应力分析   总被引:4,自引:0,他引:4  
为了分析混凝土在早龄期时温度应力随龄期的发展.通过建立混凝土材料的水化放热模型,引入Arrhenius公式来表征早龄期时混凝土放热速率受温度的影响.采用考虑等效龄期的混凝土弹性模量和抗拉强度CEB-FIP1990计算公式来表征早龄期时温度变化对其力学性能的影响,在应力分析中采用Bazant的双幂函数徐变模型.结果表明:引入Arrhenius公式的混凝土水化放热模型可以用于计算混凝土结构早龄期时的温度场,早龄期时温度应力可以引起混凝土长墙的开裂.早龄期时混凝土结构温度应力的计算为优化混凝土材料的组成提供依据,尽可能减少温度应力引起的开裂.  相似文献   

16.
对于大型LNG储罐,其穹顶因水泥水化热产生较大的热应力,引起混凝土开裂,严重影响储罐的耐久性。以某大型LNG储罐穹顶为研究对象,采用ADINA有限元软件建立精细化的有限元模型,模拟LNG储罐穹顶分段浇筑过程中的早期温度场分布,并将数值计算结果与现场测试结果进行对比;数值分析时考虑了混凝土徐变及龄期效应,对混凝土穹顶的温度场和应力场进行耦合计算,得到穹顶的热应力分布及裂缝开展情况,对穹顶混凝土开裂风险进行评估,进而对参数的敏感性进行分析。结果表明:穹顶内外在混凝土浇筑过程中产生温差较大,导致巨大热应力;第一浇筑带的热应力明显比其他浇筑带大,环向热应力大于经络向热应力,将使穹顶边缘产生沿环向分布的经络向温度裂缝;水泥种类对穹顶热力分析结果有很大的影响。  相似文献   

17.
大体积混凝土施工裂缝控制   总被引:7,自引:0,他引:7  
大体积混凝土结构,由于水泥水化过程中释放的水化热引起的温度变化和混凝土收缩产生的温度应力及收缩应力,是其产生裂缝的主要原因,而大体积混凝土的内部温升,又可视为强化水泥硬化、充分利用其活性的能源。因而在大体积混凝土施工中采取减少水泥用量,控制温差应力,稳定其体积,辅之以水冷却及其他措施,可以有效地控制温度应力和温度变形裂缝的扩展,取得较好的技术经济效果。  相似文献   

18.
矿物掺合料对高性能混凝土浆体水化热的影响   总被引:1,自引:0,他引:1  
研究了矿物掺合料对高性能混凝土浆体水化热的影响 ,结果表明 :矿物掺合料的加入可明显降低水泥浆体的水化热、放热速率 ,同时推迟达到最高温升的时间 ,尤其是双掺、三掺更为显著。利用矿物掺合料减少水化热和延迟水化放热进程的作用 ,可以缓解高性能混凝土水泥用量大及标号高造成的早期放热量大的程度 ,降低温度应力 ,提高混凝土的耐久性。  相似文献   

19.
研究了矿物掺合料对高性能混凝土浆体水化热的影响,结果表明:矿物掺合料的加入可明显降低水泥浆体的水化热、放热速率,同时推迟达到最高温升的时间,尤其是双掺、三掺更为显著。利用矿物掺合料减少水化热和延迟水化放热进程的作用,可以缓解高性能混凝土水泥用量大及标号高造成的早期放热量大的程度,降低温度应力,提高混凝土的耐久性。  相似文献   

20.
根据高性混凝土的水化特性、物理力学特性及自收缩特性,分析了高性能混凝土早期开裂机理和影响早期开裂的主要因素.并结合工程实例,借助混凝土温度和应力有限元仿真计算方法分析研究了表面适度保温和水管冷却技术在高性能混凝土温控防裂中的应用效果.研究结果表明,表面适度保温与水管冷却相结合能有效降低混凝土的内外温差,减小混凝土早期表面拉应力与后期内部拉应力,防裂效果明显,对类似的工程具有借鉴作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号