首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
复合添加剂对金属陶瓷惰性阳极导电性的影响   总被引:3,自引:1,他引:3  
为了改善金属相对陶瓷相的润湿,充分发挥金属相的作用,在合成含10%Ag的Ag/NiFe2O4金属陶瓷过程中引入添加剂TiO2和V2O5,采用粉末冶金法制备Ag/NiFe2O4金属陶瓷惰性阳极.原料NiO,Fe2O3,Ag和微量TiO2,V2O5经混料、成型后在1 250℃下烧结6 h.研究了添加剂TiO2,V2O5对Ag/NiFe2O4金属陶瓷微观形貌以及对试样电导率的影响.研究结果表明,复合添加TiO2,V2O5后金属银在陶瓷相中呈线状分布,EDX分析发现金属相中含有陶瓷相的组成,说明金属相与陶瓷相间的润湿性有所改善;同时试样的电导率有了显著提高.当添加0.5%TiO2,2.0%V2O5时试...  相似文献   

2.
金属含量对Cu-Ni-NiFe2O4金属陶瓷导电性能的影响   总被引:15,自引:0,他引:15  
制备了添加不同含量的Cu和Ni金属粉末作为导电组元的NiFe2O4基金属陶瓷材料,研究了材料的物相组成、显微组织以及金属相含量对材料致密度和电导率的影响.研究结果表明,所制备的金属陶瓷材料由NiFe2O4和Cu-Ni合金相组成,其中细小且形状不规则的(Cu-Ni)相均匀地镶嵌在NiFe2O4陶瓷基体上;试样的致密度在金属含量为0~20%范围内存在极大值;Cu-Ni-NiFe2O4金属陶瓷遵循半导体导电机理,其电导率随着温度的升高和金属含量的增大而增大.  相似文献   

3.
NiFe2O4基金属陶瓷材料的制备及其耐腐蚀性能   总被引:5,自引:1,他引:5  
采用传统粉末冶金技术制备了铝电解用Cu-NiFe2O4和Ni-NiFe2O4金属陶瓷惰性阳极,并对其在Na3AlF6-Al2O3熔体中的腐蚀行为进行了研究.研究结果表明:NiFe2O4基金属陶瓷阳极的腐蚀行为与热力学计算结果吻合;金属Cu与NiFe2O4陶瓷的润湿性能不好,Cu-NiFe2O4金属陶瓷的致密化和导电性能难以提高;致密度过低时,会导致金属相高温氧化和电解质浸渗,电极肿胀、开裂;在电解过程中,5%Cu-NiFe2O4存在金属相聚集和在陶瓷基体中Fe优先溶解的现象,但金属铜并未发生阳极溶解;5%Ni-NiFe2O4金属陶瓷易实现致密化烧结,在电解过程中表现出良好的耐腐蚀性能,会发生金属Ni的阳极溶解,并存在陶瓷基体中铁优先溶解的现象.  相似文献   

4.
金属添加方式对NiFe基/NiFe2O4金属陶瓷微观组织的影响   总被引:2,自引:0,他引:2  
采用模压真空烧结法制备了2种金属陶瓷.差热分析、X射线衍射和扫描电镜结果表明:金属相加入方式对陶瓷的结构和组成有较大影响;当Al以单质形式加入时,Al会完全改变NiFe2O4原有尖晶石相,形成新尖晶石相,同时,这种加入方式会导致金属各元素的局部分布不均匀;当Al以合金化形式加入时,由于合金化后Al的扩散得到了较好地控制,没有改变原有陶瓷成分.2种金属陶瓷中的陶瓷相在高温烧结中都不稳定,都出现了离解现象.  相似文献   

5.
采用等温热重法,测试了NiFe2O4基金属陶瓷在1 000℃时的抗氧化性能,研究了材料相对密度、金属相成分及含量对其抗氧化性能的影响,探讨了金属陶瓷氧化过程的动力学.研究结果表明:当NiFe2O4基金属陶瓷的氧化层厚度增长到一定程度后,随时间的延长其厚度变化渐趋缓慢;当金属相含量在5%~20%范围时,材料的高温抗氧化性能主要受其相对密度影响,与金属相成分及含量无关,提高金属陶瓷的致密度有利于提高其抗氧化性能,当相对密度为95%时,在1000℃氧化600 min后其氧化层厚度小于3μm;控制金属陶瓷的致密度和高温下的氧化时间,能有效地控制金属陶瓷的氧化层厚度;金属陶瓷在1000℃时的氧化过程动力学特征与金属相的氧化过程动力学特征相似.  相似文献   

6.
采用粉末冶金技术制备出铝电解用NiFe2O4-10NiO陶瓷基体和30(40Cu-Ni)/(NiFe2O4-10NiO)金属陶瓷阳极,并在低温电解条件下,对NiFe2O4陶瓷相中Fe元素的腐蚀行为进行研究。结果表明,在烧结过程中,NiFe2O4尖晶石陶瓷基体会在氮气中发生离解,在动态化学腐蚀试验和电解试验中,陶瓷相中的Fe元素更容易进入电解质;电解24h后,铝液中Fe、Ni、Cu的含量分别为0.45%、0.13%和0.03%。  相似文献   

7.
采用粉末冶金技术,冷压烧结制得NiFe2O4基金属陶瓷板状惰性阳极,并对其进行显微组织、物相等的分析,有利于改进金属陶瓷材料的配方及制备、烧结等工艺,以提高金属陶瓷材料的抗腐蚀、导电等性能。  相似文献   

8.
采用固相法制备CaCu3Ti4O12陶瓷,并对其烧结温度、晶相结构、致密化过程、显微结构及介电性能与频率的关系进行了研究。研究发现,不同烧结温度下,1000℃制备的CaCu3Ti4O12陶瓷为立方钙钛矿结构且结晶完好,晶格常数为7.394?。CaCu3Ti4O12陶瓷具有良好的显微形貌,结构致密,平均晶粒尺寸在3-5μm。CaCu3Ti4O12陶瓷在10kHz处的介电常量高达7200,介电损耗约为0.06。  相似文献   

9.
采用冷压一烧结法在不同的烧结气氛下制备17Ni/(10NiO-NiFe2O4)金属陶瓷,并研究材料的物相组成、显微结构及力学性能.研究结果表明;在低真空及氧体积分数分别为2×10-5,2×10-4,2×10-3和1×10-2的气氛中均可获得17Ni/(10NiO-NiFe2O4)金属陶瓷,但气氛中氧体积分数对各组成物相的质量分数影响较大,在低氧体积分数时NiO含量相对较高,高氧质量分数时金属相质量分数相对较高;当烧结气氛中氧体积分数为2×10-4时,可获得晶粒尺寸为2.477 μm的17Ni/(10NiO-NiFe2O4)金属陶瓷,其抗弯强度可达116.55 MPa,在960℃下抗热震循环数可达7次,具有较好的力学性能.  相似文献   

10.
以NiO和Fe2O3为原料采用固相烧结法合成了NiFe2O4尖晶石,通过向其中添加二氧化锆纤维(ZrO2(f))制备了ZrO2(f)/NiFe2O4复合材料.研究了成型压力、烧结温度及烧结时间对复合材料气孔率和抗弯强度的影响,并利用热重分析仪、X射线衍射仪和扫描电子显微镜对复合材料进行了表征.结果表明:在160 MPa成型压力下,于1 300℃烧结6 h制备的ZrO2(f)/NiFe2O4复合材料气孔率较低,具有较高的抗弯强度;复合材料主要由四方相ZrO2和立方相NiFe2O4尖晶石组成;ZrO2(f)未与基体发生反应,避免了过强的界面结合力.  相似文献   

11.
分别以纳米和亚微米Al2O3粉末为原料,MgO为掺杂剂,SiC为高温发泡剂,利用Al2O3基陶瓷具有超塑性变形能力的特点,制备了闭孔多孔Al2O3基陶瓷.研究了不同粒径Al2O3粉末和不同MgO含量对Al2O3基多孔陶瓷开口气孔率、闭口气孔率及微观结构的影响,考察了Al2O3基多孔陶瓷的物相组成,探讨了闭口气孔在Al2O3基多孔陶瓷烧结过程中的形成机理.研究结果表明,以纳米Al2O3粉末制备的Al2O3基多孔陶瓷具有更低的开口气孔率,仅为13%,而闭口气孔率可达132%,且其闭孔孔径尺寸约为1~2μm.坯体中MgO与Al2O3反应完全,多孔陶瓷的物相组成仅为Al2O3和MgAl2O4.  相似文献   

12.
以高纯Al2O3和Y2O3粉体为原料,在浆料pH值为9.7,分散剂PAA-NHt体积分数为1.5%,固相体积分数为50%,球磨时间12h,增塑剂PEG体积分数为1.5%的优化工艺条件下制备出流动性好、分散均匀的Y2O3-Al2O3混合浆料,利用注浆成型制备YAG陶瓷球形生坯,在60℃干燥24h条件下,球坯相对密度可达50%以上,球坯圆度偏差仅0.5346%,陶瓷球坯颗粒分布均匀.以体积分数0.8%的SiO2为烧结助剂,在1650℃保温6h,采用液相法烧结获得了自磨损率仅5.68×10^-6/h的YAG新型陶瓷磨球,可用于高性能YAG陶瓷的制备.  相似文献   

13.
激光烧结陶瓷粉末成形零件的研究   总被引:2,自引:0,他引:2  
实验研究了Al2O3陶瓷粉末的激光烧结过程,介绍了激光烧结实验装置,分析了烧结参数对烧结过程的影响,得到了激光烧结的Al2O3陶瓷零件。所设计的实验装置的结构简单,可满足实验要求。  相似文献   

14.
采用AIN-稀土氧化物系统烧结助剂,通过液相烧结制备了碳化硅陶瓷.研究了不同稀土氧化物对烧结行为、烧结体显微结构和力学性能的影响.结果表明:Nd2O3-A1N,La2O3-A1N系统烧结失重较大,无法达到完全致密.Y203-A1N或AIN-Nd203-Y2O3,A1N-La203-Y20。系统可以在较低的温度下实现致密化;所有样品的晶粒细小,尺寸为1-2μm,无异常长大现象;在烧结体中除有高温烧结液相之外,还形成了稀土硅铝酸盐新相;致密的碳化硅陶瓷烧结体不但具有高硬度,而且断裂韧性高达6-8MPa·m^1/2  相似文献   

15.
以自蔓延高温合成的MoSi2和陶瓷矿物为原料,通过粉末冶金工艺制备了MoSi2发热元件,采用XRD,SEM和EDS等技术分析了MoSi2发热元件的微观组织结构和性能.结果表明:MoSi2发热元件的主要成分为MoSi2,Mo5Si3和陶瓷矿物.加入陶瓷矿物明显活化了MoSi2的烧结,降低了MoSi2的烧结温度,阻止了MoSi2晶粒的过度长大,使得发热元件具有比较均匀的组织结构以及较高硬度和断裂韧性.通电氧化可以使MoSi2发热元件表面生成一层以SiO2为主的含有少量MgO,CaO,Na2O,Al2O3等物质的玻璃相,提高了元件表面保护膜的稳定性.  相似文献   

16.
 以TiH2粉末为原料,通过压制成型和烧结工艺制备粉末钛合金,不同于传统钛粉末冶金方法。通过热分析和热膨胀技术研究不同球磨粒度TiH2粉末的脱氢和收缩规律,以此入手研究了TiH2粉末压坯和TiH2-Al-V粉末压坯的烧结致密特性,以及影响烧结过程的主要工艺因素,包括烧结温度、烧结时间、升温速率、压坯密度、压坯成型方式、合金体系,并对烧结组织进行了分析。结果表明,TiH2粉末球磨后脱氢温度降低,粉末越细,开始温度越低。TiH2粉末压坯在烧结过程中脱氢后获得新鲜钛,其易发生黏接并引起α-Ti的强烈收缩,这时烧结体很容易致密,并获得相对密度大于99%坯体;相比之下,TiH2-Al-V粉末压坯烧结时因为合金元素的溶解,不如纯TiH2粉末压坯的烧结容易致密。TiH2-Al-V粉末经过成型、烧结脱氢可获得典型的层片状α+β钛合金组织,合金元素分布均匀。  相似文献   

17.
Dense CaAl2Si2O8 ceramics were prepared via a two-step sintering process at temperatures below 1000°C. First, pre-sintered CaAl2Si2O8 powders containing small amounts of other crystal phases were obtained by sintering a mixture of calcium hydroxide and kaolin powders at 950°C for 6 h. Subsequently, the combination of the pre-sintered ceramic powders with MeO·2B2O3 (Me=Ca, Sr, Ba) flux agents enabled the low-temperature densification sintering of the CaAl2Si2O8 ceramics at 950°C. The sintering behavior and phase formation of the CaAl2Si2O8 ceramics were investigated in terms of the addition of the three MeO·2B2O3 flux agents. Furthermore, alumina and quartz were introduced into the three flux agents to investigate the sintering behaviors, phase evolvements, microstructures, and physical properties of the resulting CaAl2Si2O8 ceramics. The results showed that, because of their low-melting characteristics, the MeO·2B2O3 (Me=Ca, Sr, Ba) flux agents facilitated the formation of the CaAl2Si2O8 ceramics with a dense microstructure via liquid-phase sintering. The addition of alu-mina and quartz to the flux agents also strongly affected the microstructures, phase formation, and physical properties of the CaAl2Si2O8 ce-ramics.  相似文献   

18.
采用溶胶-凝胶法制备纳米TiO2粉体,研究了溶液配比、烧结工艺对纳米TiO2粉体材料的影响,分别采用XRD和SEM对所制备样品的物相及形貌进行了表征.结果表明:当pH=4.5,钛酸丁酯与无水乙醇的比例为2:5,蒸馏水与无水乙醇的比例为1:3,所获得的TiO2溶胶性能良好;实验在不同烧结温度(300,450,600℃)下,所获得的TiO2粉末均为锐钛矿型,未发生晶型转变;在600℃烧结所制备的TiO2粉末的晶粒分布均匀、细小,直径约为25nm.可以得知,所制备的纳米TiO2具有良好的光催化性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号