首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 80 毫秒
1.
使用SAC/SAC-CI方法,利用D95 LL、6-311 gLL以及cc-PVTZ等基组,对H2分子的基态X1Σ g、第二激发态B1Σ u及第三简并激发态C1Πu的平衡结构和谐振频率进行了优化计算。通过对三个基组的计算结果的比较,得出了cc-PVTZ基组为三个基组中的最优基组的结论;使用cc-PVTZ基组,利用SAC的GSUM(Group Sumof Operators)方法对基态X1Σ g、SAC-CI的GSUM方法对激发态B1Σu 和C1Πu进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态X1Σg 、第二激发态B1Σ u和第三简并激发态C1Πu相对应的光谱常数(Be,αe,ωe和ωeχe),结果与实验数据基本一致。  相似文献   

2.
使用SAC/SAC-CI和D95++**、6-311++g**及cc-PVTZ基组,分别对D2分子的基态X1Σ+g、第二激发态B1Σ+u和第三简并激发态C1Πu的平衡结构和谐振频率进行优化计算.对所有计算结果进行比较,得出cc-PVTZ基组为最优基组.运用cc-PVTZ基组和SAC方法对基态X1Σ+g、SAC-CI方法对激发态B1Σ+u和C1Πu进行单点能扫描计算,并用正规方程组拟合Murrell-Sorbie函数,得到相应电子态的势能函数解析式,由得到的势能函数计算了与X1Σ+g、B1Σ+u和C1Πu态相对应的光谱常数,结果与实验数据较为一致.  相似文献   

3.
为了弄清BCl在金属蚀刻中的机理,了解BCl分子激发态势能函数和稳定性的基本信息是必要的.运用群论及原子分子反应静力学方法,推导出了BCl分子低激发态A1Π、a3Π1的电子态及相应的离解极限;使用SAC/SAC—CI方法,6-311 g(d)**基组对BCl分子低激发态A1Π、a3Π1的平衡结构和谐振频率进行了几何优化计算,并对BCl分子低激发态A1Π、a3Π1进行了单点能扫描计算,用正规方程组拟合Murrell—Sorbie函数,得到相应电子态的势能函数解析式,利用得到的势能函数计算了相对应的力常数(f2、f3、f4)和光谱数据(Be、αe、ωe、ωeχe),数据值分别为:基态BCI(X1Σ )的Re=0.1867 nm,De=1.4855 eV,Be=0.6228 cm-1,αe=0.0060 cm-1,ωe=810.2001 cm-1,ωeχe=4.981 cm-1;激发态BCI(a3Π1)的Re=0.1726 cm,De=6.1151 eV,Be=0.6843 cm-1,αe=0.0039 cm-1,ωe=897.8493 cm-1,ωeχe=5.2800 cm-1;激发态BCI(A1Π)的Re=0.1722 nm,De=7.1515 eV,Be=0.6799cm-1,αe=0.0085 cm-1,ωe=784.5359 cm-1,ωeχe=12.88 cm-1.结果与文献数据相符合;在基态的平衡位置处,计算了从基态到A1Π、a3Π1态的垂直激发能,其值分别为7.6291 eV,10.1023 eV.  相似文献   

4.
使用分子反应静力学的有关原理,推导出了^7LiH分子的基态X^1∑^+、单重态的第一激发态A^1∑^+、第二激发态B^1∏以及三重态的第二激发态b^3∏的合理离解极限。利用“对称性匹配蔟-组态相互作用”方法,在完全活性空间中计算了这一分子相应于上述各态的平衡核间距。其中,X^1∑^+态为0.1609nm;A^1∑^+和B^1∏态分别为0.2487和0.2434nm;b^3∏态为0.1958 nm .在基态的平衡位置处,计算了从基态到A^1∑^+、B^1∏及b^3∏态的垂直激发能,其值分别为3.613、4.612和4.233eV.将本文获得的计算结果与其它理论方法获得的计算结果及实验结果进行了比较,计算结果与实验结果吻合得很好;同时,本文获得的平衡核间距和垂直激发能与使用很复杂的方法获得的计算结果也相当接近。  相似文献   

5.
使用SAC/SAC-CI方法,利用D95++**、6-311++g**以及cc-PVTZ等基组,对HD分子的基态(X1Σ+g)、第二激发态(B1Σ+u)和第三激发态(C1Πu)的平衡结构和谐振频率进行了优化计算.通过对3个基组的计算结果的比较,得出了cc-PVTZ基组为三个基组中的最优基组的结论;使用cc-PVTZ基组,利用SAC的GSUM(Group Sum of Operators)方法对基态(X1Σ+g)、SAC-CI的GSUM方法对激发态(B1Σ+u)和(C1Πu)进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态(X1Σ+g)、第二激发态(B1Σ+u)和第三激发态(C1Πu)相对应的光谱常数(Be, αe, ωe 和ωeχe),结果与实验数据基本吻合.  相似文献   

6.
T2分子X1∑g+,B1∑u+ 和C1Πu态的势能函数   总被引:1,自引:1,他引:0  
使用SAC/SAC-CI和D95 **,6-311 g**及cc-PVTZ基组,分别对T2分子的基态X0Σg 、第2激发态B1Σu 和第3简并激发态C1Πu的平衡结构和谐振频率进行优化计算.对所有计算结果进行比较,得出cc-PVTZ基组为最优基组.运用cc-PVTZ基组和SAC方法对基态X1Σg ,SAC-CI方法对激发态B1Σu 和CΠu进行单点能扫描计算,并用正规方程组拟合Murrell-Sorbie函数,得到相应电子态的势能函数解析式,由得到的势能函数计算了与X1Σg ,B1Σu 和C1Πu态相对应的光谱常数,结果与实验数据吻合.  相似文献   

7.
利用分子反应静力学的原理,确定了7L iH分子X1Σ 态的合理离解极限;使用HF、QC ISD、QC ISD(T)、B3LYP和B3P86等方法,6-311G、6-311G(d,p)、6-311G(3df,3pd)、D95V(d,p)和D95V(3df,3dp)等基组,对7LiH分子X1Σ 态的平衡核间距、谐振频率和离解能进行了优化计算,且将计算结果(平衡核间距0.160 9 nm、谐振频率1 390.51 cm-1、离解能2.474 eV)与实验结果(平衡核间距0.159 6 nm、谐振频率1 405.7cm-1、离解能2.515 eV)进行了比较,得出了包含单、双取代并加入三重激发贡献的QC ISD(T)方法为最优方法、基组6-311G(3df,3pd)为最优基组的结论.在QC ISD(T)/6-311G(3df,3pd)理论水平,对7LiH分子的X1Σ 态进行了单点能扫描,并用最小二乘法拟合出了其解析势能函数;从拟合出的解析势能函数出发,计算出了X1Σ 态的光谱常数Be,αe和ωeeχ(其值分别为7.379 cm-1、0.197 6 cm-1和21.697 cm-1),以及二阶、三阶和四阶力常数f2、f3和f4(其值分别为106.37 aJ.nm-2、-3 650.4 aJ.nm-3和112 176.2 aJ.nm-4).  相似文献   

8.
利用分子反应静力学的原理,确定了7Li2分子A1Σ 态的离解极限;利用SAC-CI方法、使用6-311G、6-311 G、6-311G(3df,3pd)、6-311 G(3df,3pd)、D95(3df,3pd)、D95、D95V、D95V(d,p)、cc-PVTZ和AUG-cc-PVTZ等基组,对7Li2分子A1Σu 态的平衡几何进行了优化计算,且将计算结果与精细的单点能扫描结果进行了比较.分析表明,由单点能扫描获得的平衡核间距应更为合理.同时也得出了AUG-cc-PVTZ基组为最优基组的结论.在0.14~1.5 nm范围内对该态进行了单点能扫描,并用最小二乘法拟合出了其解析势能函数.从得到的解析势能函数出发,计算了该态的力常数(f2、f3和f4)及谐振频率(ωe),进而计算了其他光谱常数(Be,αe和ωeχe),理论值与实验结果一致.同时为便于分析和比较,对基态X1Σg 也进行了相应的计算.  相似文献   

9.
使用SAC/SAC—CI方法,利用D95++^**、6—311++g^**以及cc—PVTZ等基组,对H2分子的基态X^1Σg^+、第二激发态B^1Σu^+及第三简并激发态C^1Πu的平衡结构和谐振频率进行了优化计算。通过对三个基组的计算结果的比较,得出了cc—PVTZ基组为三个基组中的最优基组的结论;使用cc—PVTZ基组,利用SAC的GSUM(Group Sum of Operators)方法对基态X^1Σg^+、SAC—CI的GSUM方法对激发态B^1Σu^+和C^1Πu进行单点能扫描计算,用正规方程组拟合Murrell—Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态X^1Σg^+、第二激发态B^1Σu^+和第三简并激发态C^1Πu相对应的光谱常数(Be,αe,ωe和ωeχe),结果与实验数据基本一致。  相似文献   

10.
使用SAC/SAC-CI方法,利用D95++**、6-311++g**以及cc-PVTZ等基组,对HD分子的基态(X~1∑_g~+)、第二激发态(B~1∑_u~+)和第三激发态(C~1Π_u)的平衡结构和谐振频率进行了优化计算.通过对3个基组的计算结果的比较,得出了cc-PVTZ基组为三个基组中的最优基组的结论;使用cc-PVTZ基组,利用SAC的GSUM(Group Sum of Operators)方法对基态(X~1∑~+_g)、SAC-CI的GSUM方法对激发态(B~1∑_u~+)和(C~1Π_u)进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态(X~1∑_g~+)、第二激发态(B~1∑_u~+)和第三激发态(C~1Π_u)相对应的光谱常数(B_e,α_e,ω_e 和ω_eχ_e),结果与实验数据基本吻合.  相似文献   

11.
证明了Σ1e型Banach空间X上黎斯算子类R(X)就等于非本性算子理想In(X),从而R(X)是B(X)中亏维为1的依算子范数闭的双侧理想;给出Σ1e型Banach空间上良有界算子的一些性质.  相似文献   

12.
 利用Gaussian程序中电子相关耦合族方法CCSD(T)和QCISD(T),分别与基组6-311 + + G**和cc-pvdz组合,优化计算了HF分子基态的平衡结构、离解能.采用标准Murrell—Sorbie函数,进行非线性最小二乘法拟合,得到了HF分子势能函数的解析表达式,并进一步计算出了HF分子的力常数以及光谱常数.计算结果与实验数据非常吻合.  相似文献   

13.
在考虑相对论有效原子实势 (RCEP)近似下 ,用G94W程序的QCISD方法计算了LaH分子基态X1Σ 的Murrell Sorbie解析势能函数及其对应的平衡几何与光谱参数 ,计算得到的Re,De,Be,αe,ωe和ωeχe的理论计算值分别为 :0 .2 12 5nm ,2 .62 3eV ,3 .73 3 3 ,0 .0 72 3 ,14 61.72和 2 1.3 83 (cm-1) ,该结果与实验数据及理论数据符合得比较好 .  相似文献   

14.
用电子耦合簇方法CCSD(T)、QCISD(T)和基组6-311++G**c、c-pvdz,研究了TCl分子基态的平衡结构和离解能,得到的平衡核间距与实验值吻合.采用标准Murrell—Sorbie函数进行了非线性最小二乘法拟合,得到了TCl分子势能函数的解析表达式,并进一步计算出TCl分子的力常数及光谱常数.计算结果与实验数据非常吻合.  相似文献   

15.
利用戴维宁定理求得一个倒Π型基本单元,进而用求和归一的方法得到"Π型 D/A权电容网络"的改进形式即"倒Π型 D/A权电容网络".相比前者,该D/A权电容网络具有转换速度快和动态误差小的特点,在电子技术应用领域有重要的现实意义和实用价值.  相似文献   

16.
用量子化学计算方法CCSD和QCISD,分别在基组6-311++G**和TZV下,优化计算了DBr分子基态的平衡结构和离解能,得到的平衡核间距与实验值基本吻合.采用标准Murrell—Sorbie函数进行非线性最小二乘法拟合,得到了DBr分子势能函数的解析表达式,并进一步计算出DBr分子的力常数及光谱常数.  相似文献   

17.
运用B3P86,B3LYP,QCISD,QCISD(T),CCSD,CCSD(T)等方法、6-311G,6-311++G(d,p),6-311G(df),6-311++G(3df),6-311+G(3df),aug-cc-pvdz等基组对As2基态的平衡结构进行优化计算,计算结果与实验值进行比较,得出B3LYP/6-311+ G(3df)基组为最优基组;然后对As2基态进行谐振频率计算,得到谐振频率cm-1,并进行单点能扫描计算,用最小二乘法拟合为Murrell-Sorbie函数,由势能函数参数计算与As2基态相对应的光谱常数,结果与实验数据较为一致.这些数据为砷团簇研究提供了理论依据.  相似文献   

18.
19.
采用密度泛函理论的B3LYP方法和二次组态相互作用的QCISD和QCISD(T)等理论方法,在D95(d),6-311G(d,p)和6-311G(3df,3pd)基组下,对HCl分子基态的平衡结构、离解能和谐振频率进行了优化计算,利用QCISD/d95(d)对HCl分子的基态进行了单点能量扫描,并将扫描结果用正规方程组拟合Murrell-Sorbie势能函数.由拟合得到的势能函数,计算与X1Σ 态相应的光谱常数(Be、αe、ωe和ωeχe),其结果与实验符合得较好.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号