首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
第242次香山科学会议的主题是“宇航科学前沿与光障问题”.如所周知A.Einstein于1905年断言“超光速没有存在的可能”,后人称为“光障”.但在这次会议上宋健院士指出,该说法仅是假设,因为超光速运动不能完全观测,在什么也看不见的地方只能是猜测或假说.现在把太阳系内飞行称为航天,系外飞行称作宇航.估计在本世纪将有第一批宇航员飞出太阳系并安全返回,而飞出太阳系是人类的伟大理想.但这有许多理论与技术问题需要解决.所以必须加大航行速度,应达到光速,可能的话应为超光速.本文回顾了10年前召开的第242次香山科学会议的成就,探讨了2003~2013年间的超光速研究工作.首先对“光障”和“声障”作了比较研究,认为可压缩流体力学可用在超光速研究中,空气动力学发展对突破光障有参考作用.其次讨论了信息速度问题,指出近10年来负群速(NGV)已在许多科学实验中发现,而NGV是超光速的一种形式.众多群速超光速实验是很大的成绩,从波粒二象性角度看就有可能发现以超光速运动的奇异电子.故可考虑改装加速器,使粒子在通过某种势垒后能量减小从而速度加快(v>c区域的规律).这类似于使用Laval管突破声障的方法.……本文还讨论了Alcubierre曲速引擎的改变空时以实现超光速宇航方案,虽只是假说,但美国《时代》周刊已于2012年9月19日报道说:“美国航天局着手研究超光速曲速引擎”.因此,重要之点在于NASA已认可超光速宇宙航行.根据10年来超光速研究的发展,认为新学科“超光速物理”的建立已是既成事实.最后进一步讨论了真空中光速c的定义及光速恒定性问题.  相似文献   

2.
基本物理常数出现于一些不同的物理现象中,是自然界客观规律的反映。1973年国际计量局(BIPM)决定真空中光速c值为299792458m/s;它的基础是高精度光频测量和高精度光波长测量,再用标量方程c=λf求出真空中光速。1983年根据这个值规定了更新的米定义;从那时起c值被固定化了,亦即真空中光速成为指定值。国际计量界认为无需再测量真空中光速。1983年的米定义已沿用至今。本文质疑了"真空中光速c"的定义和米定义。1905年Einstein提出狭义相对论(SR),其中有一个公设——光速不变性原理,但迄今缺乏真正的实验证明;近年来却有一些实验结果可能证伪了光速不变性。这种情况损害了国际计量大会(CGPM)1983年米定义的理论基础。如何看待真空始终是科学中的关键问题之一。当考虑量子物理真空概念时,实际上c是一个有起伏的值。分析显示,在今后的研究中c的恒值性和稳定性仍然有待解决。更有甚者,当计算真空中双平行导体板间能量时,会发现光速增大为超光速,虽然增值很小。不仅如此,真空极化作用也会改变光速;如此等等。真空中光速一旦指定就永远不变,但这是不可能的。既然计量学家认为关于光速恒定性的实验仍需进行,那就必须继续做高精度的光速测量。近年来光频测量技术飞速发展,锶晶格钟的不确定度仅为10-16(或更低),这为检验物理学基本理论、探讨基本物理常数是否真的是恒定常数创造了条件。而且当前已在研究修改秒定义的问题;故米定义也可以考虑修改。然而眼下尚不具备提出新的米定义的条件,因为一系列基础性难题尚待研究。例如在物理真空的概念中,真空中有许多忽隐忽现的虚光子,数量与环境温度有关。把真空看作一种媒质,光通过它时速度会减慢,其速度将与温度有关。这时真空中光速c已不再是一个恒定的常数。  相似文献   

3.
自美国物理学家O.M.Bilanuik和E.C.Sudarshan(1962年)以及G.Feinberg(1967年)的开创性工作以来,在美国、欧洲和中国都对超光速展开了研究。根据A.Einstein于1905年发表的原始论文,超光速没有存在的可能,但其1907年的论文对“信号传播不能超光速”却不很肯定。文章把速度问题分解为若干类、项,并提出“广义信息速度”定义以利于对众多速度概念的讨论。在反思了40年来(1962—2003年)的超光速研究以后,得出结论认为“超过真空中光速c”是一种可实现的科学陈述。  相似文献   

4.
一九六二年以来,国内外对超光速理论都作了不少研究工作,另外,在基本粒子的研究中,有“无限分量场”和“对偶模型”理论,也都间接地涉及到了超光速粒子问题.而汤川秀树等甚至认为原子核中的π介子,主要的都在作超光速运动.过去;许多实验工作者,曾通过各种不同途径寻找超光速粒子,而都未找到.但一九七三年澳大利亚的物理工作者却报告说,他们在次级宇宙线中发现了超光速粒子.虽然这一报告还要经过认真检查才能作出肯定结论,但超光速毕竟是现代物理学中为人们所越来越关心和重视的问题了.  相似文献   

5.
北京广播学院通信工程系的黄志洵、逯贵祯教授及硕士研究生关健,最近完成了一篇英文论文“Superluminal and Negative Group Velocity in the Electromagnetic Wave Propagation”(“电磁波传播中的超光速群速和负群速”),今年6月在《Engineeting Science in China》(ESIC——中国工程院院刊英文版)上发表。文章的前半为理论研究——分析了产生群速超光速和负群速的条件;讨论了截止波导中消失波条件下的超光速群速和负群速。文章的后半报道了关于“超光速群速”的实验——据我们所知,这是国内的首例超光速实验。该实验采用同轴光子晶体(CPC)结构进行,获得了阻带中的超光速群速,V_g=(1.5~2.4)c。  相似文献   

6.
Einstein的理论并非神圣不可侵犯,超光速将开启新物理学的大门,而自1955年以来一系列理论与实验研究企图发现超光速现象,多个实验显示超光速是可能的.本文在回顾1955年至2009年的研究后,得到"超光速是可实现的科学陈述"的结论.因此,狭义相对论关于"没有可以超光速行进的事物"的说法归于无效.飞出太阳系是人类长久以来的理想,飞行速度最好达到光速或超光速.当然这很难做到,但也不是绝对不可能.1947年超声速飞机试飞成功突破了"声障"一事已成历史,而可压缩流力学似可用到超光速研究中来,即以空气动力学成就作为突破"光障"的参考.从理论上讲研究"量子超光速性"是很重要的,具体包含两个方面:量子隧穿及量子纠缠态,它们分别对应小超光速(v/c<5)和大超光速(v/c>104).现时的超光速研究可考虑用圆截面截止波导(WBCO)来改造直线加速器,再检验电子的运动;亦即用量子隧穿以实现超光速,而在经过势垒之后波和粒子的能量减弱.这与突破声障的情况(例如Laval管)相似.为了研究飞船以超光速作宇宙航行的可能性,必须尝试使中性粒子(中子、原子)加速运动并达到高速.然而现实是不存在中子加速器,因此发现以超光速运动的电子(奇异电子)是科学家不妨一试的实验课题.从波动力学和渡粒二象性的观点看,"群速超光速"在实验中取得了广泛的成功,预示着粒子形态的电子以超光速运动的可能性存在.但后者与前者一样必然是"小超光速".这正好体现了电磁作用的传递速度(电磁波本征速度)仅为光速的事实,亦即无论波动或粒子的运动都只能在特殊条件下比光速c稍快.  相似文献   

7.
紧紧把握住深化理论的正确方向   总被引:1,自引:1,他引:0  
爱因斯坦在评价自己的相对论时曾经说过:“(它)肯定会让位给另外的理论,虽然其具体理由我们目前尚未无法臆测,我相信深化理论的进程是没有止境的。”从1996年10月,我国科学工作者召开第一次关于“电磁波波速与超光速问题座谈会”起,几乎每年都召开有关超光速、相对论和现代物理创新的学术讨论会。开始时以电磁理论工作者为主,还有光学和理论物理的学者与参与。以后流体力学与气体  相似文献   

8.
超光速运动的可能性   总被引:2,自引:0,他引:2  
本文在相对论的理论框架内讨论“超光速”的可能性 .将物质按静止质量m0 分为三种独立形态 ,其中m0 取虚数值的被称为“虚物” ,它只能以“超光速”运动 .光进入介质 (或位垒 )后 ,其能量 -动量关系E2 =C2 P2 易遭破坏 ,后果之一是转化为E2 相似文献   

9.
本文提出了关于物体运动速度的一个科学猜想:自然界的物体运动速度覆盖从0到∞的全部数轴。在此基础上,我们进一步提出,超光速世界的物理规律在物体速度趋于光速时以Einstein相对论为极限。提出了超光速测量的新思路,即利用系统经济学的层级战略思想,增加超光速测量的维数:至少增加一个变量同时和光速一起测量,或者考虑增加测量仪器的维数。  相似文献   

10.
目前人们的研究兴趣是改变光脉冲的群速度,产生光停、慢光、快光(超光速的光).按照物理理论,反常色散媒质中可能出现“快光”,而它就称为“快光媒质”.已有许多产生快光的实验,这就开辟了被称为“色散技术”的研究前景.例如,科学界对群速超过真空中光速c的信号传播感到好奇.而在另一方面,以群速vg行进的短波脉冲、微波脉冲、光脉冲,如vg比无限大还大,就称为负群速(NGV)传播.这时发生如下现象:输入脉冲峰到达被测物(DUT)之前,DUT输出端已呈现脉冲峰的身影.这虽与直观经验不符,但都是实验发现.当某种材料中光的群速为负,这就是NGV媒质.虽然NGV时常出现在增益系统中,无源系统也不断发现NGV现象;后者可由同轴电缆、波导、微带线、光纤而构成.实验中如加大失配即可加大群时延,进而获得NGV.若n为媒质有效折射率,则获得NGV的条件是{f/n dn/df}>1.虽然许多实验证明了群速超光速现象存在,科学界仍感困惑.2001年证明了关系式(-v)e=|T|2vg((-v)平均能速,T系统传输系数),故当vg很大(vg>c|T|-2)时能速将比光速大.有关研究带来了令人兴奋的可能性.Brillouin的信号速度定义存在问题,数学意义超越物理意义.我们的反驳是,最重要之点在于传播中不失真的波群(波包).由此出发的理论分析证明,众多NGV研究者已观察到的超光速传播其实就是实现了超光速通信.……超光速群速传播和负群速波传播,这两者各有其用途.科学家们把这与多个领域(如光通信、光场压缩态、量子纠缠)相联系,并得出结论说,高效、低耗的快光的潜在应用是广阔的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号