首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this paper, the physical basis and application conditions of the entransy theory are reviewed and discussed. Entransy can be obtained from the analogy between heat and electrical conductions. It is a state value and the‘‘potential energy’’ of heat. From the viewpoint of thermomass, it reflects the thermal energy of the thermomass in an object. Furthermore, it was also related to the microstate number and is a single value function of the microstate number. The concepts of entransy, entransy flux and entransy dissipation can be used to express the least action of heat transfer. The entransy balance equations for heat transfer and thermodynamic processes and their applications to thermal systems are also reviewed. The differences between the entransy theory, constructal theory, entropy generation minimization, exergy analyses method, principle of uniformity of temperature difference field and field synergy(coordination) principle are also discussed. The entransy theory is different from the other discussed theories. The limitations of the entransy theory are also discussed.  相似文献   

2.
1 Results Solid oxide fuel cells (SOFC) are ceramic fuel cells that convert chemical into electrical energy in a temperature region between 650 ℃ and 1 000 ℃.Systems are currently under development for a variety of applications e.g. for both small and large scale stationary combined heat and power systems but also for the supply of electrical energy in the automotive area. The current objectives in the development of SOFCs is to lower the operating temperature from 850 ℃ down to below 750 ℃ in order to ...  相似文献   

3.
1 Results Solid oxide fuel cells (SOFC) are ceramic fuel cells that convert chemical into electrical energy in a temperature region between 650 ℃ and 1 000 ℃.Systems are currently under development for a variety of applications e.g. for both small and large scale stationary combined heat and power systems but also for the supply of electrical energy in the automotive area. The current objectives in the development of SOFCs is to lower the operating temperature from 850 ℃ down to below 750 ℃ in order to improve durability and reduce costs of the SOFC stack.  相似文献   

4.
Prospects of Anaerobic Digestion Technology in China   总被引:1,自引:0,他引:1  
As the world’s largest developing country, China must face the problem of managing municipal solid waste, and the challenge of organic waste disposal is even more serious. Considering the characteris- tics of traditional waste disposal technologies and the subsequent secondary pollution, anaerobic digestion has various advantages such as reduction in the land needed for disposal and preservation of environ- mental quality. In light of the energy crisis, this paper focuses on the potential production of biogas from bio- waste through anaerobic digestion processes, the problems incurred by the waste collection system, and the efficiency of the anaerobic digestion process. Use of biogas in a combined heat and power cogeneration system is also discussed. Finally, the advantages of anaerobic digestion technology for the Chinese market are summarized. The anaerobic digestion is suggested to be a promising treating technology for the organic wastes in China.  相似文献   

5.
This paper reviews the early development of design requirements for seismic events in US early developing US nuclear electric generating fleet. Notable safety studies, including WASH-1400, Sandia Siting Study, and the NUREG-1150 probabilistic risk study are briefly reviewed in terms of their relevance to extreme accidents arising from seismic and other severe accident initiators. Specific characteristic about the nature of severe accidents in nuclear power plants are reviewed along with present day state of art analysis methodologies (MELCOR and MACCS) that are used to evaluate severe accidents and to optimize mitigative and protective actions against such accidents. I is the aim of this paper to make nuclear operating nations aware of the risks that accompany a much needed energy resource and to identify some of the tools, techniques and landmark safety studies that serve to make the technology more safe and to maintain vigilance and adequate safety culture for the responsible management of this valuable but unforgiving technology.  相似文献   

6.
Large reciprocating compressors are important equipment used in a wide range of process industries. Most of these compressors have huge power requirements and their capacity often needs to be regulated. Advanced technologies in compressor capacity control are effective approaches for saving large amounts of energy in process industries. This paper reviews the basic theories and the state of the art of the capacity control technologies. In particular, a compressor working procedure is first presented using an analogy to the pulse signal concept. Compressor capacity control methods are classified into pulse frequency modulation and pulse amplitude modulation from a perspective of pulse signal processing. The mechanisms and feasibility of some important methods, including dead volume variable control, partial-stroke and full-stroke suction valve opening, are reviewed. Based on the pulse signal concept, a duty cycle regulation method for capacity control is introduced, and the performance and implementation of the new method are compared with those of the existing suction valve opening methods. The duty cycle regulation method has integrated advantages over the other methods in terms of regulating precision, pressure stability, energy saving and reliability. All the suction valve opening methods can cause gas reflux, resulting in the so-called breathing effect. The breathing effect has negative effects on regulation performance and compressor security, which needs further investigation in the future.  相似文献   

7.
A multistage endoreversible Carnot heat engine system operating between a finite thermal capacity high-temperature fluid reservoir and an infinite thermal capacity low-temperature environment with generalized convective heat transfer law [q∝(ΔT) m ] is investigated in this paper.Optimal control theory is applied to derive the continuous Hamilton-Jacobi-Bellman (HJB) equations,which determine the optimal fluid temperature configurations for maximum power output under the conditions of fixed initial time and fixed initial temperature of the driving fluid.Based on the universal optimization results,the analytical solution for the Newtonian heat transfer law (m=1) is also obtained.Since there are no analytical solutions for the other heat transfer laws (m≠1),the continuous HJB equations are discretized and dynamic programming algorithm is performed to obtain the complete numerical solutions of the optimization problem.The relationships among the maximum power output of the system,the process period and the fluid temperature are discussed in detail.The results obtained provide some theoretical guidelines for the optimal design and operation of practical energy conversion systems.  相似文献   

8.
Almost the same quantity to net output work of energy has been carried out and wasted by exhaust gas in typical automotive engine. Recovering the energy from exhaust gas and converting to mechanical energy will dramatically increase the heat efficiency and decrease the fuel consumption. With the increasing demand of fuel conservation, exhaust gas energy recovery technologies have been a hot topic. At present, many researches have been focused on heating or cooling the cab, mechanical energy using, and thermo-electronic converting. Unfortunately, the complicated transmission of mechanical energy using and the depressed efficiency of thermo-electronic converting restrict their widely applying. In this paper, a kind of pneumatic driving automotive engine exhaust gas energy recovery system, in which highly compressed air acts as energy storing and converting carrier, has been established. Pneumatic driving motor can produce moderate speed and high torque output, which is compatible for engine using. The feasibility has been certificated by GT-Power simulation and laboratory testes. The technologies about increasing recovery efficiency have been discussed in detail. The results demonstrated that the in parallel exhaust gas energy recovery system, which is similar to the compound turbo-charger structure can recovery 8 to 10 percent of rated power output. At last, a comprehensive system, which includes Rankine cycle based power wheel cycle unit etc, has been introduced.  相似文献   

9.
The world’s energy system is changing dramatically. Li-ion battery, as a powerful and highly effective energy storage technique, is crucial to the new energy revolution for its continuously expanding application in electric vehicles and grids. Over the entire lifetime of these power batteries, it is essential to monitor their state of health not only for the predicted mileage and safety management of the running electric vehicles, but also for an “end-of-life” evaluation for their repurpose. Electrochemical impedance spectroscopy (EIS) has been widely used to diagnose the health state of batteries quickly and nondestructively. In this review, we have outlined the working principles of several electrochemical impedance techniques and further evaluated their application prospects to achieve the goal of nondestructive testing of battery health. EIS can scientifically and reasonably perform real-time monitoring and evaluation of electric vehicle power batteries in the future and play an important role in vehicle safety and battery gradient utilization.  相似文献   

10.
In this study,the transportation and storage problems for regional power coal allocation planning are formulated as transportation and storage problems to realize the minimization of the regional transportation and storage cost.An effective optimization model is proposed to solve transportation and storage problems for regional power coal allocation planning,which has interactive effect on multiple participants,such as regional power plants,coal transportation companies,logistics centers,and coal storage centers.A case study illustrates that the model and algorithm are more reasonable compared with the classic transportation model,and the sensitivity analysis improves transportation and storage strategies for regional power coal allocation planning.Results demonstrate that this model can not only satisfy more of the actual requirements of the integral system but also offer more information to the decision-makers(DMs) for reference in favor of exalting decision-making quality.  相似文献   

11.
Coalfield fires are considered a global crisis that contributes significantly to environmental destruction and loss of coal resources and poses a serious threat to human safety and health. In this paper, research related to the initiation, development, and evolution of coalfield fires is reviewed. The existing detection and control techniques of coalfield fires are also reviewed. Traditional firefighting is associated with waste of resources, potential risks of recrudescence, potential safety hazards, extensive and expensive engineering works, and power shortages. Recently,coalfield fires have been recognized as having significant potential for energy conservation and heat energy recovery. Thermoelectric power generation is regarded as a suitable technology for the utilization of heat from coalfield fires. The extraction of heat from coalfield fires can also control coalfield fires and prevent reignition leading to combustion. Technologies for absorbing heat from burning coal and overlying rocks are also analyzed. In addition, the control mode of "three-region linkage" is proposed to improve firefighting efficiency. Integrating heat energy recovery with firefighting is an innovative method to control coalfield fires.  相似文献   

12.
Underground mine fire always exists since the mining activity was practiced.It poses a severe safety hazard to the mine workers and may also cause a tremendous economic loss to the mines.Methods for controlling and extinguishing fires in underground mine have long been studied and there have been significant improvements.In order to know clearly about the firefighting technology used,this paper summarizes most of the underground mine firefighting methods used in the United States the past 150 years.This paper describes not only the accepted firefighting theories,but also the technologies,both direct and indirect attacking,in accordance to regulations or codes,with special attention is given to the indirect attack method and its related technologies.Further research needed is also briefly discussed at the end of this paper.  相似文献   

13.
 在深入了解油田伴生地热能与常规地热能特征的基础上,研究和分析了现有油田伴生地热资源的评价方法及其改进方法,并对中国油田伴生地热资源现状进行了初步探讨,结果表明,中国主要油田区深度5000m以内地热资源总量为6000×108t标准煤。利用数值模拟方法研究了油田热储温度的主要影响因素与变化规律,结果表明,回注温度越高、回注流量越低,利用油田采出液发电时热储的温度下降越慢。分析了油田伴生地热发电方法与化石能源、太阳能、风能发电方法相比的优势,评价了现有国内外油田伴生地热发电示范工程,论证了油田伴生地热发电的可行性,提出了一种既能满足开发油田伴生地热要求又能提高石油产量的高效油热电联产方法。最后,对油田伴生地热的高效开发和利用,尤其是地热发电的前景进行了讨论和分析。  相似文献   

14.
我国每年都有大量的粉煤灰因无法得到有效利用而堆积在灰场,在占用大量土地的同时,扬尘、重金属浸出等现象严重污染空气、土壤及地下水。为解决上述问题,尝试采用熔融固化技术对粉煤灰进行处置。实验研究了粉煤灰的熔融固化特性、熔渣的利用以及设计了以煤为燃料的粉煤灰熔融联合余热发电系统。实验结果表明,熔融固化技术可以实现粉煤灰减量化、无害化处理以及熔渣的资源化利用。Aspen模拟结果表明余热发电能够有效地降低粉煤灰熔融处置的成本,熔融固化技术是粉煤灰处置的有效途径之一。  相似文献   

15.
能源是一个国家强盛的动力和安全的基石。世界能源发展正处在由煤炭、油气向新能源第三次转换的新阶段,形成石油33%、天然气24%、煤炭28%、新能源15%"四分天下"新格局。中国正处在以煤炭为主的能源时代,"富煤但油气不足"的资源禀赋造就煤炭59%、石油19%、天然气8%、新能源14%的"一大三小"结构,需开展能源结构转型革命,迈向煤炭40%、油气31%、新能源29%"三足鼎立"新局面。中国石油工业正在由常规油气向非常规油气发展,形成"常-非并举"格局,开展从单体圈闭"油气藏"到大面积"甜点区"的理论革命、从直井天然能量到水平缝网"人工油气藏"的技术革命、从人工作业到信息智能化低成本开发的管理革命、从能源政治到重塑能源新版图的战略革命。中国能源转型道路选择"减煤稳油增气、大力发展新能源"两大方向,面临煤炭清洁化利用、油气对外依存度攀升、新能源未来支柱产业不明朗"三大挑战",需布局煤炭、油气、新能源"三大战略领域",开展能源供给侧、能源消费侧、能源技术侧、能源体制侧"四大革命",把握现行国家政策、"一带一路"战略、新一轮油价回暖、天然气规模发展、新能源技术革命方向"五大机遇",完成中国能源转型的历史使命。社会文明发展和科学技术进步是驱动能源转型的两大动力,社会文明发展是内在动力,科学技术进步是根本动力,从传统化石能源向非化石新能源转型是能源发展的必然趋势和必然选择。  相似文献   

16.
大型工厂车间内空气含尘浓度较高,为保证职工的健康及设备的安全,车间内配置引风机及除尘装置,对车间内进行通风换气。为提高能源利用效率,利用除尘风机乏风发电,可再生资源发电用于企业生产,降低企业能耗也意味着降低了煤耗及气体污染物的排放,同时起到节能减排的效果,具有一定的经济意义与社会意义。  相似文献   

17.
现阶段深部煤层的开发过程中,煤层埋藏深、温度高,开发初期伴生地层水携高温废热开采至地面造成了部分能源浪费.基于资源综合利用角度上,为了使深部煤层开发中携带的废热用于热泵技术热源,提出废井改造地热井以降低钻井成本,以此设立深部煤层地热开发的工艺及热泵技术适用条件,从经济性及安全性两方面去分析深部煤层地热开发的可行性,给出了利用热泵系统进行煤层伴生废热开发的条件,最终建立出相关热泵系统模型,通过具体的示例环境参数进行计算.得出鄂尔多斯东缘神府地区某区块深部煤层伴生废热的单井制热量可达14.8 kW,热泵系统的制热性能系数(COP)可达到4.33~7.31,同时,煤层气井出口混合产物温降将近10℃.表明煤层伴生废热开发在提高了井上采收作业安全性的同时拥有较好的采热开发环境,扩展了废热可利用的经济性,提出一种深部煤层综合性开发的新型模式.  相似文献   

18.
目前,我国的工业余热资源丰富,余热资源的合理利用必将对我国能源结构的改革起到很好的促进作用.有机朗肯循环(Organic Rankine Cycle,ORC)是提高能源利用效率的有效途径之一.其具有结构简单、适用热源温度范围广、余热回收效率高等优点,ORC发电技术已成为余热回收领域的热点课题之一.针对低温余热ORC发电技术进行了理论分析和工质研究,完成了发电目标为20 kW、以向心透平为膨胀机的低温余热ORC发电系统试验平台的设计,并完成了数据采集及控制系统的设计.20 kW (小功率)向心透平的设计,扩大了低温余热ORC发电系统的应用范围,促进了余热资源产业的发展.  相似文献   

19.
 针对煤田火区发展演化多场耦合作用过程,分析了热-流-固耦合机理及不同时期煤体燃烧状态及产物。揭示了煤田火区发展演化是由煤氧复合化学反应而放热升温,产生热应力及烧空区致使上覆岩层失稳塌陷,形成煤岩体裂隙网络产生裂隙场,从而为氧气及燃烧产物对流循环提供通道,进一步促使火区向深部扩展延伸的灾变机理。因此,煤田火区温度场、裂隙应力场、渗流场及化学场之间的耦合作用是加速煤体燃烧的非线性动力循环过程。  相似文献   

20.
为实现煤矿资源利用最大化及节能环保,根据章村矿实际情况,提出章村煤矿坑口煤基废弃物资源化循环利用模式.研究坑口电厂双高粉煤灰利用技术及高效烟气脱硫技术,解决双高煤粉灰的利用难题;开发水泥厂窑炉余热的低温发电技术及矿井废热低品位热能回收技术,用于井筒防冻和建筑空调.该研究为煤基废弃物资源化循环利用提供了有效方法,具有推广应用价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号