首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
抚顺油页岩干馏渗透实验研究   总被引:2,自引:0,他引:2  
为了为地下原位开采页岩油提供一定的理论依据,在高温高压蒸汽作用下进行了油页岩的干馏实验,以及干馏后油页岩的三轴渗透实验.结果表明:①高温高压蒸汽可以有效地干馏油页岩并带走页岩油;②高温高压蒸汽作用下油页岩会产生大量的裂缝,从而提高油页岩的渗透性;③油页岩干馏后渗透系数是体积应力和孔隙压的函数,其关系仍然服从指数规律.实验结果对地下原位开采页岩油有一定的指导意义.  相似文献   

2.
在油页岩原位开采过程中,需要300℃以上高温持续对地层加热数月甚至数年,造成井筒密封完整性失效。目前国内外关于油页岩原位开采的研究集中于加热方式的实验介绍,没有可参考的实钻井筒结构设计。依据吉林松南青一段油页岩的实际情况,设计电加热、注热氮气加热两种不同开发方式下的井筒结构,利用有限元软件对加热体、套管、水泥环、围岩组合体密封完整性模型进行模拟分析。结果表明,采用600℃电加热方式进行开采时,热量传入地层迅速衰减,有效开发半径仅2. 0 m,难以适用于油页岩的开采;采用注热氮气加热开发时,有效开发半径仅5. 0 m,考虑后期压裂,热氮气可通过裂缝有效加热地层,适用于油页岩的开采;套管在加热段热应力可达1 094 MPa,需选用偏梯扣TP110H抗高温套管。  相似文献   

3.
油页岩可以被看作横观各向同性材料,其热传导系数、热膨胀系数、弹性模量、渗透率均表现出较强的各向异性。首先建立了横观各向同性热流固耦合数学模型,然后结合高温作用下获得的油页岩各向异性物理力学参数,对原位注蒸汽开采油页岩进行数值研究。结果表明:油页岩储层温度场分布与过热蒸汽在储层中的运移密切相关,在温度场边缘形成快速降温带;蒸汽注入过程中,在油页岩矿层中部形成应力集中区,随着注入时间的增加,应力集中区向底板方向移动;渗透率的各向异性对油气产量影响最大,其次是弹性模量的各向异性,而热传导系数的各向异性对油气产量影响不大。研究结果可以为原位注蒸汽开采油页岩提供理论基础。  相似文献   

4.
提出了一种油页岩地下原位转化的新方法,即压裂-注氮原位裂解油页岩技术.油页岩储层压裂后,在加热井内下入电加热器,然后向井内注入氮气,利用加热后的高温氮气原位裂解油页岩.介绍了该方法与传统的电加热法和对流加热法相比的优势,以及特别适用的地层,并且对加热氮气过程进行了传热模拟,优化了气体加热器的参数,确定加热器的最佳长度为30 m,其热流密度为11 k W/m2.针对本工艺方法特别适用的薄层油页岩地下原位开采,进行了地层加热时间的传热模拟,确定了80 d即可将井距15 m,矿层1.5 m厚的油页岩加热到裂解温度,较电加热法和对流加热法的加热时间明显缩短.  相似文献   

5.
油页岩原位注蒸汽开发的固-流-热-化学耦合数学模型研究   总被引:1,自引:0,他引:1  
针对目前传统地面干馏油页岩技术中存在的高成本、高污染问题,提出了对油页岩进行原位注蒸汽开发的新方法.并利用太原理工大学研制的高温高压干馏釜对油页岩进行了高温高压蒸汽作用下油页岩干馏渗透实验.结果表明:高温高压蒸汽作用下油页岩会产生大量的孔隙、裂隙,从根本上提高了油页岩的渗透性;主要利用对流传热的方式,高效率地加热了油页岩并带走页岩油.同时,在复杂理论分析的基础上建立了油页岩原位注蒸汽开发过程中的固、流、热、化学耦合数学模型,包含了众多的耦合项作用,为分析解决油页岩原位注蒸汽开发过程中的复杂物理化学过程提供了理论依据.  相似文献   

6.
中国油页岩原位开采可行性初探   总被引:1,自引:0,他引:1  
中国油页岩资源量为11 602×108t,其中埋藏深度在500~1 500 m的油页岩资源量为6 813×108t,原位开采技术是开发该部分资源的有效手段。中国油页岩原位开采技术处于实验阶段,通过对油页岩热分解、热破裂规律、渗透变化规律等方面的研究,初步探索了油页岩原位开采的可行性。油页岩热分解过程可以分为3个阶段:干燥脱水、热解生油、无机矿物质的分解。在这3个阶段中,由于油页岩内部物理化学反应的程度不同,导致孔隙和裂缝发生了不同程度的变化,变化最大的是热解生油阶段。利用非稳态数学模型研究了油页岩电加热原位开采的温度场分布,表明加热5 a后可以对页岩油进行开采,产油时间至少可以维持2 a。  相似文献   

7.
根据吉林松原油页岩原位开采试验的布井方式、油页岩及流体物性参数等情况,构建了油页岩原位开采的单压裂隙-单注气井基本模型(模型Ⅰ),采用Fluent软件进行了油页岩热流体加热过程温度场模拟。为了研究不同原位开发方案的效率,在模型Ⅰ的基础上,通过增加压裂隙数、注气井数,建立了双压裂隙-单注气井模型(模型Ⅱ)、双压裂隙-双等深注气井模型(模型Ⅲ)和双压裂隙-双不等深注气井(模型Ⅳ),分别开展了注气速率为5m/s和10m/s、注气加热1500天情况的模拟。模拟结果表明,当油页岩层压裂程度越高、模型注气速率越高、注气井数量足够和注气井贯穿压裂隙加热油页岩层时,油页岩的开发利用越彻底,设计方案最优。  相似文献   

8.
原位开采是油页岩未来主流开采技术,目前油页岩原位开采技术研究对象多为厚层油页岩,但中国存在大量的薄层油页岩,故研究薄层油页岩原位电加热温度分布规律具有重要的意义.针对中国特殊薄层油页岩结构,采用ANSYS软件中瞬态热分析模块,建立薄层油页岩原位电加热模型,研究加热5年内薄层油页岩中温度场分布.仿真结果表明:油页岩的有效加热体积随加热时间增加而增大,且加热前3年增加速度显著快于3年之后,加热3年后继续加热增热效果已不明显,故加热薄层油页岩在加热3年可以使利益最大化.研究结果为中国薄层油页岩的开发提供了数据支撑.  相似文献   

9.
油页岩原位开采技术是一种经济、环保的油页岩利用技术。在油页岩原位开采过程中,温度变化引起油页岩中干酪根的分解及黏土矿物的转化使油页岩的孔隙度和渗透率发生改变,而孔隙度和渗透率正是影响生成的烃类物质运移的重要因素。为了研究油页岩原位开采过程中孔隙度和渗透率的变化规律,参考吉林省松原地区油页岩原位开采的现场试验情况,以梅花状布井方式建立了三维模型,模拟了油页岩原位开采的注热、生烃、黏土矿物转化以及孔隙度和渗透率变化的过程。结果表明:油页岩原位开采过程中,油页岩的孔隙度和渗透率随生烃过程的进行呈现增大趋势,且增长速率先快后慢,注热1 000 d时,孔隙度增长了3. 37%,渗透率增长了0. 004 9×10~(-3)μm~2。油页岩的孔隙度随蒙脱石-伊利石的转化逐渐增大;蒙脱石-伊利石转化过程使油页岩的渗透率有所增大;注热1 000 d时,孔隙度增长了2. 14%,渗透率增长了0. 002 5×10~(-3)μm~2。  相似文献   

10.
稠油组合式热力开采参数优化   总被引:1,自引:0,他引:1  
基于目前常规稠油开采技术,进行了稠油组合式热力开采工艺数值模拟研究,对开发方式转换时机、蒸汽注入速率、采注比、蒸汽干度等工艺参数进行了优化,得出蒸汽吞吐过度到蒸汽辅助重力驱油的最佳转换时机为井间联通温度达到120℃,蒸汽注入速度为100~150 m3/d,采注比为1.2,注入蒸汽干度为0.5以上;建议对于未开采油藏,先进行一定轮次的蒸汽吞吐开采再转蒸汽辅助重力泄油开采。  相似文献   

11.
利用高电压工业频率电流加热油页岩,可以在油页岩内部形成等离子体的通道,利用产生的等离子体与导电通道碳化的内表面对油页岩进行加热,实现油页岩的原位裂解.本文采用有限元分析软件建立油页岩三维耦合模型,通过数值计算获得高压工频裂解油页岩的温度场分布.在电压为1000V,工业频率电流为5A时加热6min,油页岩电极中心部位的温度达到597℃,在电极附近30mm范围内,温度达到347℃,满足油页岩裂解需求;随电流的增加,相同时间内油页岩被有效加热的温度增加,并且有效热解的范围增大.从数值模拟结果分析可知,高电压工业频率电流加热裂解油页岩技术,升温速率快,能量有效利用率高.  相似文献   

12.
多元热流体吞吐已成为海上稠油的主要热采方式。为优化注入参数,对水平井井筒沿程热力参数和加热半径进行预测。考虑井筒流动与油层渗流的耦合,建立水平段井筒中多元热流体流动和换热的数学模型。计算多元热流体水平段沿程压力、干度和加热半径分布,分析气体含量、注入速度等因素的影响。结果表明:在注入过程中,水平段沿程压力和蒸汽干度逐渐下降,加热半径呈先下降后上升的"U"型变化;保持其他条件不变,适当降低非凝结气体含量、增大注入流量,有助于扩大加热范围。  相似文献   

13.
利用热重仪对新疆油页岩进行不同温度下的热解实验,结果显示热解温度高低和油页岩在特定温度下的热解时间都会明显影响到油页岩的失重率,热解新疆油页岩的最佳温度值为500℃;通过高精度显微CT实验系统对热解后油页岩的细观进行测试,得到注蒸汽原位开采油页岩是完全可行的结论,这对油页岩原位开采技术的发展具有重要意义。  相似文献   

14.
为预测原位热解工艺带来的水文地质环境变化,通过控制热解温度和时间的方法研究了不同热解程度油页岩的孔隙率变化规律。从油母质热解造成油页岩孔隙率变化的机理出发,结合油页岩的热解反应速率方程,建立了热解过程中油页岩的孔隙率变化定量模型,并将理论值与实验值进行了对比验证。结果表明:该模型计算结果与实验数据吻合良好,误差较小。可见该孔隙率定量模型能够较准确地计算热解过程中油页岩的孔隙率。  相似文献   

15.
近年来,世界能源消耗日渐增加,作为非常规能源之一的油页岩是重要的接替资源。中国油页岩资源量丰富,居世界第四位。原位转化技术作为油页岩开采的主流技术,利用热解反应建立渗流通道,开采页岩油气。基于热解反应阶段、干酪根热解、矿物成分影响与热解协同孔隙结构演化等4个方面对原位转化过程中的热解反应特征进行研究综述:(1)热解反应各个阶段下的热物理演化与热化学反应;(2)干酪根热解的反应机理及其影响因素;(3)无机矿物分解对热解反应的促进与抑制作用;(4)热解反应协同孔隙结构演化的机理及其对微裂缝扩展的促进作用。立足于热解反应这一原位转化中的核心技术问题,力图为热解反应在油页岩与中低成熟度页岩油原位转化中的应用提供一定的参考。  相似文献   

16.
The role of sulfur in the pyrolysis of kerogen   总被引:1,自引:0,他引:1  
Sulfur plays an important role in the generation and evolution of hydrocarbon from organic matter. Here, a pyrolysis experiment in closed system was performed on Maoming oil shales kerogen (Type Ⅰ), Maoming oil shales kerogen added with sulfur ether and Maoming oil shales kerogen added with sulphur. The results suggest that the existence of sulfur can result in: (i) higher yield of hydrocarbons generated from the kerogen; (ii) decrease of the temperature for the maximum generation of heavy hydrocarbons (the C15+ fraction) by 20℃; (iii) decrease of the temperature for the maximum generation of the aromatics fraction by 40℃, and (iv) acceleration of the aromatization process. The pyrolysates from kerogen added with sulfur are similar to the heating products of the sulfur-rich kerogen as reported in the literatures. It seems that the sulfur catalysis is also an important factor that can make the sulfur-rich kerogen generate low-mature oil at the earlier diagenesis stage, except for the weakness of the C-S and S-S bonds.  相似文献   

17.
主要研究了固定床内油页岩干馏过程的三维数值模拟。通过对固定床内气固相间传热传质过程的分析,建立了完整的气固两相传热传质模型,并采用多孔介质模型与流动模型相结合,将干馏过程中水分析出和干馏油气的析出过程通过用户自定义接口添加到模拟过程中。针对实际工况进行了模拟研究并与实验结果进行比对,吻合程度较好。此外,分别从进气速度和进气温度等方面进行对比分析,研究结果表明当进气速度提高0.5倍时,干馏进程加快1 600 s。当进气速度降低0.5倍时,干馏进程延缓4 200 s,换热效率明显降低。进气温度提高100℃,干馏进程加快600 s,油页岩中干酪根热解过程前期水分最大蒸发速率提高约11.4%。当进气温度降低100℃时,干馏进程延缓1 300 s,干酪根热解过程前期水分最大蒸发速率降低约24.7%。在气体热载体和传质过程的共同作用下,靠近进气位置的底部颗粒与周围环境气体中水蒸气及干馏油气之间的浓度梯度小于上部颗粒,这也是固定床内上部颗粒干馏进程较慢的一个重要原因。  相似文献   

18.
抚顺油页岩及其残渣的热解性能   总被引:1,自引:0,他引:1  
用热重分析法研究了抚顺油页岩及其残渣的热解性质与热解动力学.结果显示,油页岩和油页岩渣的热解反应为两个过程:在常温~200℃,主要是水分的挥发,油页岩及其残渣中水的挥发量分别为2.446%和3.202%;在200~600℃,主要是固定碳的热解,失重率分别为16.048%和6.524%.采用Coats-Redfern方法得到了热解反应两个部分的动力学常数,抚顺油页岩的活化能分别为51.84和28.14 kJ/mol,频率因子分别为62.35和0.003 25 min-1;抚顺油页岩渣的活化能分别为36.62和55.05 kJ/mol,频率因子分别为0.009 76和0.341 min-1.另外油...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号