首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 312 毫秒
1.
根据不同温度条件下聚醚酰亚胺(PEI)力学性能和黏性介质压力成形原理,采用胀形和有限元分析方法对PEI板材黏性介质温热胀形过程进行研究,得到了不同温度条件下PEI板材的极限胀形试件高度以及变形过程应力与速度场的变化规律,分析了黏性介质温热成形对极限胀形试件的壁厚分布、透光性以及表面粗糙度的影响。研究结果表明:PEI板材在20~150℃范围内,随着温度的升高,材料等效应力分布梯度与材料流动速度分布梯度逐渐减小,试件变形更加均匀;PEI板材黏性介质温热胀形试件的最大壁厚减薄率在胀形试件中心呈现区域性分布,最大壁厚减薄率区域面积随着变形温度升高而增大,试验结果与有限元分析结果基本吻合;此外,通过对于PEI板材胀形试件的观测和粗糙度的测量,发现胀形过程没有对零件表面质量造成影响。  相似文献   

2.
为了揭示差厚拼焊管内高压成形中,厚管与薄管的长度比和厚度比对变形协调性的影响规律,对不同长度比和厚度比拼焊管坯胀形过程进行了数值模拟研究,并分析了长度比和厚度比与轴向应变分布、减薄率分布的关系.通过拼焊管胀形实验获得了不同长度比拼焊管坯的胀形结果,对实验件轴向应变分布和变形协调性进行了测试分析.研究表明:变形协调性随差厚拼焊管长度比增大而提高,随厚度比增大而降低.差厚管内高压成形过程中,由于壁厚不同导致薄、厚管变形状态出现明显差异,薄管靠近焊缝区域的轴向拉应变最大,致使该处减薄率明显大于其它部位.变形协调性越好,壁厚均匀性越高.  相似文献   

3.
以非线性显式有限元分析程序ANSYS/LS-DYNA为数值模拟平台,建立以橡胶为介质的三通管胀形的有限元模型,对管坯参数进行了优化.在轴向加压胀形的基础上进行反压的设计,并进行复合胀形数值分析;通过对轴向加压胀形和复合胀形的结果对比,表明复合胀形管件壁厚减薄更缓慢,壁厚分布更均匀,最终得到更大的支管长度.  相似文献   

4.
基于粘性压力胀形工艺,建立了薄板粘性压力成形的有限元分析模型.对薄板粘性压力胀形成形过程中的厚向应变分布进行了模拟,研究了薄板粘性压力胀形的成形性能,与实验结果的比较证实了该模型的有效性.对不同粘度、不同加载速率以及摩擦系数情况下的粘性压力胀形成形分别进行了计算,讨论了这几种因素对成形性能的影响,为有限元方法在薄板粘性压力成形的应用奠定了一定基础.  相似文献   

5.
板材超塑胀形先加反压使根部预拉薄,然后用微机控制正压,使极点处应变速率保持在最佳值(即 m最大值)。可使成形件壁厚均匀,成形极限提高。  相似文献   

6.
以厚度为0.11mm的8011-H22型铝箔为对象,利用UV打印技术对铝箔试件进行网格附着,采用曲面法开展了铝箔刚模胀形试验,由于试件本身的宽厚比很大且受到摩擦力的作用,使得铝箔在宽度方向的变形极小,所以只获得成形极限图的右半部分(次应变大于0);同时,通过建立铝箔刚模胀形试验过程的有限元模型并结合应变加速度判据,获取成形极限图的左半部分(次应变小于0).结果表明:利用曲面法只能获取铝箔成形极限图的右半部分(次应变大于0);而所建铝箔刚模胀形试验过程的有限元模型能够获得成形极限图的左半部分(次应变小于0).  相似文献   

7.
利用ABAQUS 6.14软件模拟了在不同壁厚下,材料为20钢双直径圆管吸能元件的液压胀形、折叠和自由翻转的过程.并分析了不同壁厚下液压胀形与折叠后的壁厚分布,准静态压缩翻转变形模式以及准静态压缩时翻转力与翻转半径与推导公式之间的关系.结果表明:壁厚减薄程度与管材初始壁厚大小有关;20钢双直径圆管成形后发生轴向压缩时其自由翻转的模式多为内管外翻;推导的翻转力与翻转半径理论公式与实际测得翻转力与翻转半径的结果比较吻合.  相似文献   

8.
管材绕弯变形的理论与实验分析   总被引:6,自引:0,他引:6  
针对管材绕弯成形的受力与变形特点,进行了理论与实验研究.应用塑性有限元方法分析了绕弯的主要工艺参数对成形后管材壁厚变化及截面椭圆度的影响,结合实验分析了变形区不同位置的椭圆度及壁厚的减薄情况.研究表明:R/D越小,变形越大,壁厚减薄也越大,而相对壁厚t/D对壁厚减薄影响不大;另外,芯棒的尺寸及位置对壁厚减薄率及截面椭圆度影响较大.  相似文献   

9.
采用ABAQUS软件建立基于热力耦合的有限元模型,对22MnB5高强板不同工艺条件下的成形过程进行模拟分析,探究摩擦系数、模具间隙和成形温度等工艺参数对热成形时的减薄率和应力分布的影响.结果表明:成形温度的升高会改善材料的塑性,导致变形抗力减小,危险点应力减小,减薄率增大.随模具间隙增加,危险点应力、减薄率都呈减小趋势.摩擦系数的增大导致材料流动阻力增大,减薄率增加,材料容易被拉裂.研究表明,摩擦系数0.1、模具间隙2.2mm、成形温度800℃为合适的工艺参数.  相似文献   

10.
在20~250℃温度范围内,对AZ31镁合金薄板进行了单向拉伸、筒形件拉深以及胀形试验,并用金相显微镜观察了试验后试件的显微组织。分析了AZ31镁合金在不同工艺所对应的应力状态下塑性变形特点及其最佳成形温度。结果表明,变形过程中所受应力状态对AZ31镁合金最佳成形温度的影响很大,AZ31镁合金在成形过程中受单向拉应力时,其总延伸率随成形温度的升高而增加;应力状态主要为压应力时,最佳成形温度应在tr=1以下;而应力状态主要为双向拉应力时,其最佳成形温度应在tr=1以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号