首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 384 毫秒
1.
该文将量子人工蜂群(Quantum artificial bee colony, QABC)算法用于K均值(K-means)聚类的类别中心点选择,优化K均值聚类算法,可有效解决因随机设置K均值中心点而导致聚类准确度不高的问题。该文设置K均值聚类类别数,并随机设置若干类别中心,采用人工蜂群(Artificial bee colony, ABC)算法优化类别中心点,根据待聚类样本点构建蜜蜂种群,并对蜂群个体位置采用量子比特表示。以样本点和中心点的距离的倒数作为ABC算法适应度,并将适应度值较高个体定义为蜜源。通过引领蜂在运动范围内的粗粒度遍历和跟随蜂的细粒度探索,不断搜寻适应度较高个体,并且更新蜜源,直至ABC算法稳定后确定较优蜜源位置为聚类中心。采用ABC优化得到的聚类中心进行K均值聚类。试验结果表明,通过合理设置ABC搜索边界,并引入蜂群位置的量子表示,可有效增强ABC对聚类中心的搜索精度。相比于常用聚类算法,QABC+K均值算法的聚类性能更优。  相似文献   

2.
通过研究基于距离的孤立点发现算法(Cell-Based),指出其存在的问题,提出了一种基于核映射空间距离的入侵检测算法.该算法通过检测孤立点的方法进行入侵检测,首先将样本通过核函数映射到高维特征空间,重新定义特征空间中的数据点之间的距离.然后经过初始聚类算法确定聚类数目和初始类中心,再通过迭代优化目标函数来实现数据点的再聚类,最终得到聚类中心,超出聚类中心点半径r外的点即为孤立点.试验结果表明,该算法能有效突出样本之间的差异,克服传统基于距离的孤立点发现算法易随参数变化而需调整单元结构的缺点,且具有更准确的检测率和较快的收敛速度.  相似文献   

3.
基于信息熵改进的 K-means 动态聚类算法   总被引:3,自引:2,他引:1  
初始聚类中心及聚类过程产生的冗余信息是影响K-means算法聚类性能的主要因素,也是阻碍该算法性能提升的主要问题.因此,提出一个改进的K-means算法.改进算法通过采用信息熵对聚类对象进行赋权来修正聚类对象间的距离函数,并利用初始聚类的赋权函数选出质量较高的初始聚类中心点;然后,为算法的终止条件设定标准阈值来减少算法迭代次数,从而减少学习时间;最后,通过删除由信息动态变化而产生的冗余信息来减少动态聚类过程中的干扰,以使算法达到更准确更高效的聚类效果.实验结果表明,当数据样本数量较多时,相比于传统的K-means算法和其他改进的K-means算法,提出的算法在准确率和执行效率上都有较大提升.  相似文献   

4.
针对全局K-means聚类算法和快速全局K-means聚类算法在选择下一簇的聚类中心点时,需要逐一计算数据集中每个点作为备选聚类中心点时的簇内平方误差函数,而数据集中存在很多不可能作为备选点的噪声点.为剔除噪声点,提出了一种基于高密度数的DGK-means算法,并通过UCI数据库中的4组数据集进行实验测试.验证了在聚类效果稳定的前提下,改进的DGK-means算法比全局K-means算法和快速全局K-means算法,聚类用时更短,聚类效率更高.  相似文献   

5.
一种改进的K-means聚类算法   总被引:1,自引:0,他引:1  
传统的K-means聚类算法对初始聚类中心的依赖程度很大,聚类结果会随聚类中心的选择不同波动很大,为了消除这种中心选择不确定性,提出一种改进的K-means聚类算法,从而有效地改善初始聚类中心点选择的随机性,提高聚类结果的稳定性.仿真实验结果表明,改进后的K-means聚类算法优于传统的算法.  相似文献   

6.
针对K-means聚类算法依赖初始点、聚类结果受初始点的选取影响较大的缺陷,给出了一种稳定的基于影响空间的初始点优化K-means聚类算法。该算法借助了影响空间数据结构和定义的加权距离吸引因子,将特殊中心点合并为K个微簇,并对微簇中的数据点加权平均得到K个初始中心点,然后执行K-means算法;最后,理论分析和实验结果表明,该初始点优化K-means聚类算法能够有效降低噪声数据对聚类结果的影响,在聚类结果、聚类过程效率方面有较大优势。  相似文献   

7.
《河南科学》2016,(3):348-351
传统K-means聚类算法中聚类初始中心点是随机确定的,实际聚类数据集中可能有孤立点,造成了每次聚类的结果不同,聚类质量不同,有时陷入局部优化状态.针对这些问题,研究者曾试图用距离法解决孤立点的判断和确定初始聚类中心.这种思路存在不科学性.因为孤立点不仅指远离其他点,同时它的周围点稀疏;另外,当数据量过大、数据特征值过多时,算法的运算量大,需要占用大量的计算机资源,运算速度过慢.对传统的K-means聚类算法进行研究,提出了基于密度参数和距离理论的初始聚类中心的确定和孤立点的判断,对传统的K-means聚类算法进行改进.  相似文献   

8.
传统的聚类算法用在MQAM(multilevel quadrature amplitude modulation,多进制正交幅度调制)信号的调制识别中,算法的迭代次数多,特别对高阶调制信号运算时间长。针对此问题,提出了一种半监督聚类重构星座图的方法,由自适应减法聚类确定初始聚类中心,在其周围标记部分样本点并赋予初始隶属度值fik,根据标记的样本点数目确定可信度参数α的值。用fik和α来监督隶属度和聚类中心的更新,误差平方和函数迭代次数减少1/2。接收端识别时,提出基于星座图圆半径的调制识别方式,该方法能很好应对初始聚类中心数目不准确的情况,不需要进行聚类中心的合并与分裂。通过提取接收端星座图的特征参数R并与标准参数Rs进行比较,实现对MQAM信号调制方式的识别。仿真结果表明运算时间是传统聚类算法的1/3,对4~256QAM信号的调制方式识别率在93%以上。  相似文献   

9.
为了提高智能推荐系统的性能,采用狼群优化的K-means聚类挖掘实现数据分类,通过协同过滤完成智能推荐。为了提高推荐效率,引入Spark平台多节点完成聚类和推荐。建立用户和资源的K-means聚类模型,采用狼群优化算法对初始类别中心点进行优化,以提高聚类准确度,根据用户和资源的类别属性获得用户-资源评分数据,最后建立协同过滤智能推荐模型。根据推荐效率要求,将推荐模型部署至Spark平台,实现聚类和智能推荐的分布式运算。实验证明,通过合理设置聚类中心点数目,结合Spark平台多节点运算,与常用推荐算法对比,所提算法可以获得更准确的推荐性能,在大规模数据的智能推荐系统中更能满足实时性要求,智能推荐效率高。  相似文献   

10.
杨莉云  颜远海 《河南科学》2019,37(4):507-513
孤立点的存在使聚类中心的计算产生较大误差,影响K-means算法的聚类效果.针对该问题,引入谢林模型,使孤立点能够自动移动到其邻居所在位置,消除孤立点,同时,对K-means算法过程中的距离计算、初始聚类中心选取环节进行改进,提出基于孤立点自适应的K-means算法.该算法首先对原始数据进行归一化处理,以提高距离计算的准确性;然后,根据谢林模型的基本思想,将孤立点移动到其最近的多邻邻居;接着,由类簇的数目确定邻居样本的搜索范围,确定初始聚类中心;最后,根据移动后的数据集和初始聚类中心,进行K-means聚类.在UCI机器学习数据库中经典聚类数据集上的实验结果表明,该算法可显著提升聚类的精度,同时,簇的内聚性也比较好.  相似文献   

11.
电力负荷曲线聚类在电力大数据研究中有重要的应用。针对传统负荷聚类方法难以有效处理海量化的高维负荷数据,以及存在簇间样本模糊导致算法聚类质量不高、聚类效率低下等问题,提出一种结合多维缩放(multi-dimensional scaling, MDS)和一种新的集成簇间、簇内欧式距离的加权K-means方法(weighting k-means clustering approach by integrating intra-cluster and inter-cluster distances, KICIC)的聚类算法(MDS-KICIC)。该方法首先采用MDS算法对高维负荷数据进行数据降维处理,得到降维后的低维矩阵和归一化的特征值向量作为KICIC算法的输入矩阵和权重向量,KICIC通过在子空间内最大化簇中心与其他簇数据对象的距离来融合簇内和簇间的距离进行聚类,得到最终聚类结果。通过算例表明该方法运算时间短、聚类质量高,进一步提高了负荷曲线的聚类性能。  相似文献   

12.
K-means 是一种基于划分的聚类算法,由于 K-means 算法在选择初始聚类中心时是随机选取 k 个点,因此一旦 k 个点选取不合理,将会误导聚类过程,得到一个不合理的聚类结果。在分析聚类结果对初值依赖性的基础上,对初值选取方法进行了分析和研究,采取“射靶”的原理进行类中心搜索。从实验结果中可以发现,改进后 K-means 得到的聚类结果更加稳定,对初始聚类中心的依赖性减弱了。  相似文献   

13.
一种改进的全局K-均值聚类算法   总被引:3,自引:0,他引:3  
将快速K中心点聚类算法确定初始中心点的思想应用于全局K-均值聚类算法,对其选取下一个簇的最佳初始中心的方法进行改进,提出选取下一个簇的最佳初始中心的一种新方法.该新方法选择一个周围样本分布相对密集,且距离现有簇的中心比较远的样本为下一个簇的最佳初始中心,得到一种改进的全局K-均值聚类算法.改进后的算法不仅可以避免将噪音点作为下一个簇的最佳初始中心点,而且在不影响聚类效果的基础上缩短了聚类时间.通过UCI机器学习数据库数据以及随机生成的人工模拟数据实验测试,证明改进的全局K-均值聚类算法与全局K-均值聚类算法及快速全局K-均值聚类算法相比在聚类时间上更优越.  相似文献   

14.
针对K-means算法因随机选取聚类中心而易造成聚类结果不稳定的问题,提出PCA-KDKM算法。该算法使用主成分分析法对数据集的属性降维,提取主属性;利用k′dist曲线自动获取k值;计算平缓曲线上所含数据对象的均值并选取其中一值,作为首个初始聚类中心;利用基于密度和最大最小距离的算法思想进行聚类;结合类间距离和类内聚类提出聚类质量评价函数。将该算法与K-means、KNE-KM、QMC-KM、CFSFDP-KM在UCI数据集上进行聚类比较,结果表明该算法聚类结果稳定,聚类准确率高。将PCA-KDKM算法应用在微博舆情分析中,抓取不同类别的数万条数据进行聚类分析。实验结果表明,PCA-KDKM算法在微博舆情分析中有更高的准确性和稳定性,有利于及时发现热点舆情。  相似文献   

15.
K—means聚类算法的研究   总被引:5,自引:0,他引:5  
为解决原始K-means算法随机选取初始聚类中心对聚类结果的影响较大的不足,提出了改进算法.采取基于采样选取聚类中心距离的规则,进行多次选择决定最终的初始聚类中心,使得改进后的算法受初始聚类中心选择的影响达到最小;同时,在选取初始聚类中心后,对初值进行数据标准化处理.将改进的K-means算法应用于销售行业,结果显示,改进后的算法比原始的算法在效率上得到了提高.  相似文献   

16.
针对传统K-means算法随机选择初始聚类中心容易造成聚类结果不稳定且准确率低等问题,基于拟蒙特卡洛(Quasi-Monte Carlo,QMC)方法提出一种新的初始聚类中心确定方法;该算法利用QMC序列分布的超均匀性特点,对整个样本空间中的样本分布进行采样估计;基于k近邻距离(k-distance)对QMC序列点进行加权的K-means聚类,得到初始聚类中心。该算法的计算复杂度为O(max(d、n)logn),其中d、n分别表示样本数据的维数和数量;在人工数据和实际数据集上的仿真实验表明,该算法能选择更优的初始聚类中心,有效降低K-means算法的迭代次数,提高聚类的准确性、鲁棒性和收敛速度。  相似文献   

17.
针对k-means算法必须事先指定初始聚类数k,并且对初始聚类中心点比较敏感,聚类准则函数对求解的最优聚类数评价不理想,提出一种基于局部密度的启发式生成初始聚类中心方法,在此基础上设计一种准则函数自动生成聚类数目,改进了传统k-means算法.实验表明改进的算法比传统k-means算法提高了聚类效率.  相似文献   

18.
传统K-means 算法对于聚类初始点的选取和距离度量的计算异常敏感,因而很可能导致K-means 算法只能收敛得到局部最优解。为此,提出一种改进的K-means 算法,即K-means 聚类算法最优匹配算法,并进行了相关的算法实验分析。该改进算法首先对传统的K-means 聚类算法进行初始点的选取,并分析聚类结果。然后,分别从初始聚类中心的选择和距离算法的确定进行实验测试,引入轮廓系数评价聚类效果,分析实验结果可知,K-means 聚类算法最优匹配算法具有较好的稳定性和较高的聚类准确率。  相似文献   

19.
基于工业领域广泛用到的Hadoop分布式计算平台,使用Canopy+K-means算法对手写数字进行聚类研究.针对传统Canopy算法初始阈值的确定问题,引入"最大最小化原则"确定初始阈值,计算得到K-means算法所需的初始聚类中心点.实验结果表明,Canopy算法能够较大程度地提高K-means算法的正确率.  相似文献   

20.
针对传统K-means算法的聚类结果依赖初始聚类中心的缺陷,提出了一种基于密度的改进K-means聚类算法,该算法选择位于数据集样本密集区且相距较远的数据对象作为初始聚类中心,实现K-means聚类。针对PAM算法时间复杂度高,且不利于大数据集处理的缺陷,提出了一种基于密度的改进K-medoids聚类算法,在选取初始中心点时根据数据集样本的分布特征选取,使得初始中心点位于不同类簇。UCI机器学习数据库数据集和随机生成的带有噪音点的人工模拟数据集的实验测试证明,基于密度的改进K-means算法和基于密度的改进Kmedoids算法都具有很好的聚类效果,运行时间短,收敛速度快,有抗噪性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号