首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用溶胶-凝胶法和化学沉积法制备了Li4Ti4.75Cu0.25O12/SnO2复合活性材料。通过X射线衍射(XRD)、扫描电镜(SEM)、恒流充放电测试对材料进行结构、形貌表征及电化学性能测试。结果表明:Li4Ti4.75Cu0.25O12/SnO2复合活性物质能够进一步改善倍率性能的同时,循环性能也得到了很好的保证。当电压在1~3 V时,电流密度为1C倍率条件下,Li4Ti4.75Cu0.25O12/SnO2复合材料首次放电比容量高达202.55 m A·h/g。经过50次循环后,容量仍保持在202.51 m A·h/g,容量保持率高达99.98%。  相似文献   

2.
文章采用固相法合成了电化学性能优异的碳包覆的锂离子电池负极材料Li3.9Mn0.1Ti5O12/C,并对材料进行了XRD、激光粒度分析、循环伏安测试及恒电流充放电测试。结果表明:Mn的掺杂未改变材料的晶体结构,由于Mn4+对Li4Ti5O12的晶胞内部的掺杂和C对其晶胞外部的包覆,使复合材料的电导率,大电流循环稳定性和可逆比容量都明显提高。在1C充放电循环时,Li3.9Mn0.1Ti5O12/C首次放电容量为162.4mAh/g,50次循环后,稳定在159.6mAh/g,容量保持率为98.3%;在2C充放电循环时,首次放电容量达到了153.5mAh/g,展示了优良的电化学特性。  相似文献   

3.
以固相反应法合成了尖晶石型Li4Ti5O12电极材料,通过掺杂Mg以提高其导电性及综合性能.XRD 表征了材料的结构特征,并通过激光粒度分析仪进行了粒度分析;用循环伏安、充放电曲线和循环次数考察了掺杂产物的电化学性能;在0.1C的放电倍率下放电,Li4Ti5O12的首次放电容量为158 mAh/g,结果表明掺杂了Mg的LiTiO产品的电化学性能和循环性能得到了很大改善.  相似文献   

4.
碳基负极材料比容量低,无法满足高能量密度电池的需求.为了进一步寻找高容量长循环寿命的电池负极材料,采用水热反应法制备了自支撑CoMoO4负极,通过X射线衍射(XRD)和扫描电子显微镜(SEM)对材料的结构、形貌进行表征,利用循环伏安法和恒电流充/放电等技术对比研究了材料在锂/钠离子电池中的电化学性能.结果表明,CoMoO4负极在锂离子电池中的首次可逆比容量为1 403.6 mAh/g,首次库伦效率为146.5%,在100 mA/g电流密度下经50次循环后仍然高达793.6 mAh/g;而CoMoO4负极在钠离子电池中首次可逆比容量仅为314.2 mAh/g,但经50次循环后容量保持率仍有76.4 %.该自支撑负极无需导电剂和粘结剂,电极材料与泡沫镍结合力强,具有优异的循环稳定性.  相似文献   

5.
以 Ni(NO3)2·6H2O为主要原料,以尿素为沉淀剂,采用均匀沉淀法制备超细氧化镍,并通过热重-差重(TG/DTA)、X-射线衍射(XRD)、扫描电子显微镜(SEM)等分析手段对其进行了表征.采用此方法可以得到粒径在1~2 μm之间的超细氧化镍粉末.NiO的首次放电容量达到670.5 mAh/g,80次循环后每次循环的容量损失仅为0.031%,表明本法制备的NiO是一种优秀的锂离子电池负极材料.  相似文献   

6.
用溶胶-凝胶法合成了焦磷酸钒锂(LiVP2O7)锂电池正极材料,XRD显示该材料属于单斜晶体结构(P21空间群),晶胞参数为a=4.804,b=8.113,c=6.939,β=109.01°,SEM测试表明该材料的粒径大约在500nm-1μm之间,分散性好.该材料首次放电容量达到91mAh.g-1,首次充放电库仑效率在93%以上,46周循环后,放电容量仍能保持在82mAh.g-1,显示出良好的循环稳定性和可逆性.  相似文献   

7.
以乙酸镁为掺杂元素、蔗糖为碳源,采用固相反应法制备镁掺杂磷酸铁锂包覆碳复合材料LiFe1-xMgxPO4/C(x=0.01,0.02,0.03,0.04).利用X射线衍射(XRD)分析其结构,扫描电镜(SEM)观察其形貌,恒电流法测定其电化学性能.研究结果表明镁离子掺杂没有影响材料的结构,而是提高了其放电容量和循环性能.在这些样品中,LiFe0.98Mg0.02位PO4/C的容量最高,首次放电达到140.0 mAh/g;并且在80次循环后容量没有衰减反而增加到148.6 mAh/g左右.  相似文献   

8.
以NH4VO3、LiOH.H2O为原料用固相合成法制备了LiV3O8锂电池正极材料,采用XRD、TEM、EDS、粒度分析方法进行该材料的微观结构研究,测试了LiV3O8样品的电化学性能。在0.1C倍率下材料的首次充放电容量为302mA.h/g、283mA.h/g,前10次循环的平均放电容量为272mAh/g。同时进一步指出了改进循环性能的研究方向。  相似文献   

9.
采用草酸盐沉淀及高温固相反应相结合的方法合成了锂离子电池的活性正极材料Li_aNi_(0.7)Co_(0.3)O_2.XRD、SEM及电化学测试数据表明:该材料结晶及层状结构良好,首次充放电比容量为175.4mAh/g和142.9mAh/g,循环30次后放电比容量仍为136.0mAh/g,比容量损失只有4.8%.  相似文献   

10.
为克服锂/硫电池的正极材料单质硫的导电性差、放电产物的部分溶解导致电池性能下降等问题,设计并制备了一种新型正极材料多硫化碳炔。通过核磁共振、拉曼光谱、X-射线及SEM等手段对其进行了研究,并得到其形态及结构信息,证明材料具有“主链导电、侧链储能”的结构。通过充放电性能测试及循环伏安测试对其电化学性能进行了研究,结果表明该材料具有较高的充放电效率与良好的循环性能,0.4mA/cm2的放电条件下60次循环后比容量可以达到400mAh/g,充放电效率接近100%。  相似文献   

11.
以氢氧化锂为锂源,在真空条件下合成了锂离子电池正极材料LiFePO4.采用X射线衍射(XRD)、扫描电镜(SEM)对样品进行表征,并对其进行电化学交流阻抗(EIS)、循环伏安(CV)和恒流充放电等电化学性能测试,并与以碳酸锂为锂源制得的材料进行比较.结果表明:两种锂源在真空条件下合成的LiFePO4均具有单一的橄榄石相,而以氢氧化锂为锂源所得的材料粒度更小且分布更均匀,比容量更高.此外,以氢氧化锂为锂源时,通过在原料预烧后的前驱体中引入碳源得到的LiFePO4/C复合正极材料在0.2 C和1.0 C时的首次放电容量分别为138.4 mAh/g和126.8mAh/g,循环30次后仍能分别释放出135.6 mAh/g和123.9 mAh/g的可逆容量.  相似文献   

12.
以碳酸锂、四氧化三钴为原料,采用高温固相烧结法制备了锂离子电池正极材料L iCo0.95A l0.03Zr0.02O2,用X-射线衍射(XRD)、扫描电镜(SEM)对材料的结构与形貌进行了表征,并组装实际电池测试了材料的电化学性能.研究结果表明,材料的实际电化学可逆容量达142mAh/g,3.6v以上电压放电容量比例达85%,循环性能好.  相似文献   

13.
0Introduction SincePadhietal[1]foundlithiumironphosphate(LiFe PO4)couldbeusedascathodematerialforthelithiumionbatteries,manyresearchgroupshavebeendevotedtoim provingtheperformanceofthismaterial[26].Theythought thatLiFePO4isoneofthemostpromisingcathodemate…  相似文献   

14.
以SnCl2·2H2O、聚乙二醇400(PEG400)和Na3C6H5O7·2H2O为主要原料,采用简单的水热法制备了SnO2负极材料.采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)表征其组成和微观形貌,并采用恒流充放电测试、循环伏安法(CV)对样品进行电化学性能测试.结果表明:添加PEG400可以有效改善SnO2表面形貌,减少其团聚现象并且使其电化学性能明显提高.当添加量为10 mL时,合成的SnO2具有良好的循环及倍率性能,首次放电比容量为2 774 mAh/g,循环50次后放电比容量为600 mAh/g,电化学性能较改性前的SnO2有了明显改善.  相似文献   

15.
以二乙烯基苯(DVB)为交联剂、偶氮二异丁腈(AIBN)为引发剂、聚乙烯吡咯烷酮(PVP)为模版剂,通过自组装,制备聚苯乙烯微球。经过氧化和高温炭化转换成硬炭微球。考察了硬炭微球作为锂离子负极材料的电化学性能。结果表明硬炭微球的首次放电比容量为505 mA·h/g,40次循环后保持在304 mA·h/g。  相似文献   

16.
炭气凝胶微球的制备及在锂离子电池负极材料中的应用   总被引:4,自引:0,他引:4  
以间苯二酚和甲醛为原料,在催化剂和表面活性剂的作用下经溶胶-凝胶、超临界干燥、炭化等过程合成一种新型的炭气凝胶微球。采 用扫描电镜(SEM)、X-射线衍射(XRD)、低温氮吸附(BET)和充放电测试等表征了炭气凝胶微球微观形貌、结构和电化学性能。结果表明:炭气 凝胶微球具有纳米网络结构(孔径集中分布在3.5nm左右),微球直径≤40μm,比表面积为555m2/g。电化学性能表现出很大的首次不可逆容量 损失,这主要与材料大的比表面积有关。但在首次循环后,具有良好的循环性能,循环20次后可逆充电容量为281mAh/g,循环效率达到100% 。  相似文献   

17.
A facile one-step strategy involving the reaction of antimony chloride with thioacetamide at room temperature is successfully developed for the synthesis of strongly coupled amorphous Sb2S3 spheres and carbon nanotubes (CNTs). Benefiting from the unique amorphous structure and its strongly coupled effect with the conductive network of CNTs, this hybrid electrode (Sb2S3@CNTs) exhibits remarkable sodium and lithium storage properties with high capacity, good cyclability, and prominent rate capability. For sodium storage, a high capacity of 814 mAh·g?1 at 50 mA·g?1 is delivered by the electrode, and a capacity of 732 mAh·g?1 can still be obtained after 110 cycles. Even up to 2000 mA·g?1, a specific capacity of 584 mAh·g?1 can be achieved. For lithium storage, the electrode exhibits high capacities of 1136 and 704 mAh·g?1 at 100 and 2000 mA·g?1, respectively. Moreover, the cell holds a capacity of 1104 mAh·g?1 under 100 mA·g?1 over 110 cycles. Simple preparation and remarkable electrochemical properties make the Sb2S3@CNTs electrode a promising anode for both sodium-ion (SIBs) and lithium-ion batteries (LIBs).  相似文献   

18.
以LiOH.H2O,V2O5,WO3以及柠檬酸为原料采用流变相法合成了锂钒氧化合物LiWxV3O8(x=0,0.01,0.03,0.05).利用XRD对目标产物的结构进行表征,结果表明:掺杂前后LiWxV3O8均为单斜结构,但掺杂后晶胞参数a和c值与纯相LiV3O8相比略有增加,有利于锂离子在晶体结构中的迁移.同时,对该材料的电化学性质进行测试,结果发现:掺杂后样品的循环性能相对纯相LiV3O8均有所提高,尤其是LiW0.01V3O8电化学性能最为优异,首次放电比容量达238 mAh/g,经过40次循环后容量为185 mAh/g.交流阻抗谱也表明了LiW0.01V3O8具有较小的电荷传输阻抗.对LiW0.01V3O8具有较好电化学性能的原因进行了初步讨论.  相似文献   

19.
采用熔融态金属锂与高纯硼粉复合制备了锂硼复合材料并应用于固态电解质(Li6.4La3Zr1.4Ta0.6O12, LLZTO)制作对称电池,对比研究了锂硼复合固态对称电池与锂金属固态对称电池的电化学性能。结果表明:锂硼复合固态电池界面阻抗(约6 Ω/cm2)小于金属锂固态电池的界面阻抗(约103 Ω/cm2),说明锂硼复合电极和固态电解质接触良好;在400 μA/cm2的电流密度下进行充放电测试,锂硼复合固态对称电池可以稳定循环250次以上,而金属锂固态电池很快失效;锂硼复合固态对称电池在0.1 mAh保持容量下的临界电流密度达到2 700 μA/cm2,在0.1 mA/cm2电流密度下的面容量可达12 mAh/cm2。研究表明该锂硼复合固态对称电池具有优异的循环性能。  相似文献   

20.
采用水热法制备了S/石墨烯复合材料,并利用XRD,SEM,TEM等手段考察了其微观结构及形貌特征,发现石墨烯呈现多层状,与硫复合后能将其充分包覆。以复合材料为正极、锂为负极组装成扣式电池进行CV,EIS及充放电等电化学性能测试。结果表明:添加石墨烯后硫正极的可逆性明显改善,多次充放电后电池内阻有所增加,在0.3mA/cm2电流密度下放电,首次放电比容量为1 145mAh/g,经30次充放电循环后仍可稳定在500mAh/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号