首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 921 毫秒

1.  基于免疫粒子群优化的模糊C均值聚类算法  
   韩琳  贺兴时《西安工程科技学院学报》,2007年第21卷第3期
   把免疫系统的免疫信息处理机制引入到粒子群优化(PSO)算法中,并与模糊C均值(FCM)算法相结合提出一种新的模糊聚类算法.新算法用免疫粒子群优化算法代替FCM算法的基于梯度下降的迭代过程,使算法具有较强的全局搜索能力,很大程度上避免了FCM算法易陷入局部极小的缺陷,同时也降低了FCM算法对初始值的敏感度.采用对当基思想初始化种群,获得更优的初始候选解,提高算法聚类过程中的收敛速度.以UCI机器学习数据库中的两组数据集为研究对象,实验结果表明,该算法优于基于PSO的模糊C均值聚类算法和FCM算法.    

2.  基于粒子群寻优机制的图像分割方法  
   邢颖  孙劲光《世界科技研究与发展》,2011年第33卷第3期
   利用粒子群优化(eso)算法全局寻优、快速收敛的特点,结合模糊C-均值(FCM)图像分割算法提出一种新算法,用PSO算法代替了FCM算法的基于梯度下降的迭代过程,使算法具有很强的全局搜索能力,很大程度上避免了FCM算法易陷入局部极小的缺陷;同时也降低了FCM算法对初始值的敏感度。实验结果表明,与FCM相比该算法聚类更准确,效率更高,具有较高的分割速度和良好的抑制噪声的能力。    

3.  一种融合遗传算法和粒子群算法的改进模糊C-均值算法  
   诸克军  李兰兰  郭海湘《系统管理学报》,2011年第20卷第6期
   针对模糊C-均值(FCM)算法必须预先给定聚类数c和容易陷入局部极小的缺点,提出了融合遗传算法和粒子群算法的GA-PSO-FCM算法.遗传算法(GA)嵌套在FCM算法的外层,用于自动寻找最优聚类数,并把有效性准则函数作为其适应度函数;粒子群(PSO)算法嵌套在FCM算法的内层,用于优化类中心向量,提高算法的全局搜索能力.最后,运用GA-PSO-FCM算法对Iris data、Wine data、Zoo data、WPBC data和WDBC data进行仿真实验,并与基于有效性准则函数改进的FCM算法、GA-FCM算法的仿真结果进行比较,表明GA-PSO-FCM算法能在预先未知聚类数的情况下,提高分类结果的精确性和稳定性.    

4.  基于模糊聚类的粒子群优化算法  被引次数:3
   陈琳  何嘉《西南民族学院学报(自然科学版)》,2007年第33卷第4期
   粒子群优化算法(PSO)的基础上,提出了基于模糊C-均值聚类(FCM)算法的粒子群优化算法.该算法在每次迭代过程中首先通过FCM算法把粒子群体分成若干个子群体,然后粒子群中的粒子根据其个体极值和子群中的最优粒子更新自己的速度和位置值.通过典型复杂函数测试表明,基于模糊C-均值(FCM)的粒子群优化算法的优化性能和效率远远超过基本粒子群优化算法.    

5.  基于APSO的模糊聚类算法  
   李金霞《南京邮电大学学报(自然科学版)》,2009年第9卷第19期
   利用改进的自适应粒子群优化算法(APSO)较强全局寻优、快速收敛的特点和模糊C-均值算法(FCM)对初始值敏感、容易陷入局部最优的缺点,提出一种基于自适应粒子群优化算法的模糊聚类算法(APFM)。新算法有效的克服了FCM算法的缺点,同时增强了APSO算法全局搜索和跳出局部最优的能力。实验表明:新算法与单一的FCM和APSO算法相比聚类更准确,效率更高。    

6.  基于APSO的模糊聚类算法  被引次数:1
   李金霞《科学技术与工程》,2009年第9卷第19期
   利用改进的自适应粒子群优化算法(APSO)较强全局寻优、快速收敛的特点和模糊C-均值算法(FCM)对初始值敏感、容易陷入局部最优的缺点.提出一种基于自适应粒子群优化算法的模糊聚类算法(APFM).新算法有效的克服了FCM算法的缺点,同时增强了APSO算法全局搜索和跳出局部最优的能力.实验表明:新算法与单一的FCM和APSO算法相比聚类更准确,效率更高.    

7.  模糊聚类算法的优化设计  
   张鸿彦  许奇功《河南大学学报(自然科学版)》,2013年第4期
   文章阐述了模糊C-均值聚类算法(FCM)原理及存在的缺点,通过将粒子群优化算法思想应用到模糊聚类算法中,对模糊聚类算法进行了优化设计.实验证明,改进的算法具有较好的全局最优解,克服了传统模糊C聚类算法的不足,聚类效果优于单一使用FCM算法.    

8.  基于改进模糊C均值聚类的图像分割算法  被引次数:1
   李艳灵  李刚《信阳师范学院学报(自然科学版)》,2008年第21卷第3期
   提出了一种基于模糊C均值算法和粒子群算法的混合算法.该算法利用PSO算法全局性和鲁棒性的特点,将PSO优化聚类结果作为后续FCM算法的初始值,有效地克服了FCM对初始值敏感,易陷入局部最优和PSO算法局部搜索较弱的问题.算法中使用基于统计直方图的快速FCM算法进行初始化,收敛速度大大提高.实验结果表明该算法具有较高的分割速度及其对噪声的较强的鲁棒性.    

9.  基于PSO-FCM算法的同调发电机识别  
   张宝珍  张尧  林凌雪  郑立《华南理工大学学报(自然科学版)》,2013年第4期
   针对同调动态等值法中的同调发电机分群问题,提出了基于粒子群优化(PSO)的模糊c均值聚类(FCM)算法来识别同调发电机.该算法将聚类中心数作为粒子进行编码,利用粒子群优化的并行性和全局搜索能力,通过不断更新粒子的速度和位置实现寻优,克服了模糊c均值聚类对初值的依赖和易陷入局部极值的缺点.文中还构造了聚类有效性函数来进行聚类效果的评价.IEEE10机39节点系统仿真表明,该算法具有快速、准确、简单、易实现的特点,有效解决了同调发电机的识别问题,可用于电力系统不同运行方式下同调发电机的分群.    

10.  基于粒子群优化的马氏距离模糊聚类算法  
   祖志文  李秦《重庆邮电大学学报(自然科学版)》,2019年第31卷第2期
   为解决传统模糊聚类迭代算法对初始化敏感,易陷入局部最优及处理高维数据时精度下降的问题,对基于马氏距离的模糊聚类算法(fuzzy c-means algorithm based on Mahalanobis distance,M-FCM)进行优化。将马氏距离代替欧氏距离,通过构造类内紧致度、类间分离度与类间清晰度结合的适应度函数,利用粒子群优化算法(particle swarm optimization,PSO)对马氏距离模糊聚类进行研究,提出了基于粒子群优化的马氏距离模糊聚类算法(Mahalanobis distance fuzzy clustering algorithm based on particle swarm optimization,DPSOM-FCM),并将此新算法与FCM(fuzzy c-means algorithm),M-FCM,PSO-FCM,IFPSOFCM(importance for fuzzy clustering algorithm based on particle swarm optimization)算法,在UCI(university of californiairvine)数据库的6个标准数据集上进行实验对比分析。结果表明,DPSOM-FCM算法具有算法收敛性和聚类有效性,并且聚类精确度优于其他算法,对高维数据的聚类识别能力强,即该算法具有全局优化作用。    

11.  基于混沌自适应引力搜索的模糊C均值聚类算法  
   程国  刘亚亚  赵鹏军《河南科学》,2014年第12期
   针对传统模糊C均值聚类算法(FCM)易陷入局部极小值和对初值敏感的缺陷,提出一种基于混沌自适应引力搜索的模糊C均值聚类算法.首先采用自适应的更新粒子速度和混沌优化粒子最优位置的策略,对引力搜索算法进行改进.其次,用改进的引力搜索算法优化FCM的初始聚类中心.在Iris和Wine数据集上的实验表明,该算法具有很强的全局搜索能力,提高了聚类的效果和效率.    

12.  PSO高斯诱导核模糊c均值聚类算法*  
   计算机协会会员证号:M文传军  詹永照《科学技术与工程》,2018年第18卷第8期
   为了避免陷入梯度法局部极值以提升模糊聚类算法聚类性能,提出PSO高斯诱导核模糊c均值聚类算法(PSO Gauss-induced kernel fuzzy c-means clustering algorithm, PSO-GIKFCM)。首先将高斯核函数应用于模糊c聚类算法(FCM)目标函数,得到高斯核模糊聚类目标函数。然后在高斯核特征空间和输入空间利用梯度法得到两空间聚类中心,将特征空间聚类中心与样本的内积核矩阵代入输入空间聚类中心,从而得到高斯诱导核的聚类中心。最后在解空间利用粒子群算法(PSO)对模糊隶属度进行寻优估计,并结合目标函数和聚类中心构成PSO-GIKFCM参数估计迭代流程。PSO-GIKFCM算法基于粒子群算法保证其收敛性,聚类中心仅为模糊隶属度的函数,PSO生物进化算法在解空间全局寻找优解,且将模糊指标扩展为大于0的情况。通过仿真实验验证了所提出算法的有效性。    

13.  粒子群高斯诱导核模糊C均值聚类算法  
   文传军  詹永照《科学技术与工程》,2018年第8期
   为了避免陷入梯度法局部极值以提升模糊聚类算法聚类性能,提出PSO高斯诱导核模糊C均值聚类算法(PSO Gauss-induced kernel fuzzy C-means clustering algorithm,PSO-GIKFCM)。首先将高斯核函数应用于模糊C聚类算法(FCM)目标函数,得到高斯核模糊聚类目标函数。然后在高斯核特征空间和输入空间利用梯度法得到两空间聚类中心,将特征空间聚类中心与样本的内积核矩阵代入输入空间聚类中心,从而得到高斯诱导核的聚类中心。最后在解空间利用粒子群算法(PSO)对模糊隶属度进行寻优估计,并结合目标函数和聚类中心构成PSO-GIKFCM参数估计迭代流程。PSO-GIKFCM算法基于粒子群算法保证其收敛性,聚类中心仅为模糊隶属度的函数,PSO生物进化算法在解空间全局寻找优解,且将模糊指标扩展为大于0的情况。通过仿真实验验证了所提出算法的有效性。    

14.  基于改进粒子群的模糊聚类超声图像分割  
   杨丞  费洪晓《科学技术与工程》,2011年第11卷第21期
   医学超声图像由于存在斑点噪声等模糊和不确定性的特点使得分割一直是一个难题。模糊C-均值聚类算法是一种结合无监督聚类和模糊集合概念的技术,广泛应用于图像分割,但存在着受初始聚类中心和目标函数高度非线性影响,极易收敛到局部极小的缺点。将集群智能的粒子群优化算法(PSO)与模糊C-均值聚类算法相结合,实现了基于粒子群模糊C-均值聚类的图像分割算法。实验结果表明,该方法具有搜索全局最优解的能力,因而可得到很好的图像分割结果。    

15.  基于GA与PSO并行的模糊聚类算法  
   刘能现  俞建家《福州大学学报(自然科学版)》,2009年第37卷第3期
   针对FCM算法不足,提出一种改进的模糊聚类算法:基于遗传算法(GA)与粒子群优化算法(PSO)并行的模糊聚类算法.实验结果表明,该算法比单基于GA或者PSO的模糊聚类有较好分类正确率与稳定性,有效克服了传统FCM算法对初值敏感和易陷入局部极小值的问题.    

16.  基于PS-IFKCM的弹道中段目标识别方法  
   余晓东  雷英杰  孟飞翔  雷阳《系统工程与电子技术》,2015年第1期
   针对现有直觉模糊核c-均值(intuitionistic fuzzy kernel c-means,IFKCM)聚类算法对初始值敏感、易陷入局部最优解及收敛速度慢等缺陷,汲取了粒子群优化(particle swarm optimization,PSO)算法优势,对初始聚类中心进行优化,提出了基于粒子群优化的直觉核c-均值(particle swarm-based intuitionistic fuzzy kernel c-means,PS-IFKCM)聚类算法,选取4组标准数据集实际样本数据对算法的有效性进行了试验。最后选取弹道中段目标识别常用的雷达截面积(radar cross section,RCS)这一特征属性进行弹道中段目标识别仿真实验,并将其与模糊c-均值(fuzzy c-means,FCM)算法、IFKCM算法的识别效果及运行时间进行比较分析,表明了该算法应用于弹道中段目标识别的有效性及优越性。    

17.  基于PSO的模糊C均值聚类算法  被引次数:4
   王玲  贺兴时《甘肃联合大学学报(自然科学版)》,2008年第22卷第2期
   在分析模糊C均值聚类算法存在不足的基础上,提出了一种新的聚类算法:基于粒子群的模糊C均值聚类算法.该算法利用粒子群强大的全局寻优能力,不仅克服了传统的模糊C均值聚类算法对初始值敏感、噪声数据敏感、易陷人局部最优的问题,而且有较快的收敛速度.试验证明,这种算法是一种很有潜力的模糊聚类算法.    

18.  基于生物地理学模糊C均值聚类的图像分割算法  
   朱丽莉  李真真《应用科技》,2012年第5期
   提出了一种基于模糊C均值算法和生物地理学优化算法的混合聚类算法(BBO-FCM).该算法结合了生物地理学优化算法的全局搜索和FCM算法快速局部搜索的特点,利用生物地理中的迁移算子来进行各解之间的信息共享,从而有效地克服了FCM对初始值敏感、易陷入局部最优等问题.将BBO-FCM算法用于图像分割,实验表明,新算法的聚类效果评价指数更好,聚类效果明显优于原始的FCM算法.    

19.  基于人工免疫粒子群优化算法的动态聚类分析  被引次数:1
   王磊  吉欢  徐庆征《西安理工大学学报》,2008年第24卷第4期
   模糊C-均值聚类算法受初始化影响较大,在迭代时容易陷入局部极小值。将粒子群优化算法与模糊G-均值聚类算法相结合,提出一种新颖的动态聚类算法。该算法利用人工免疫思想改进粒子群优化过程,在很大程度上避免了粒子群算法和聚类算法早熟现象的发生,全局搜索能力和局部搜索能力优于同类算法。利用聚类理论中的经验规则kmax≤√n确定聚类数k的搜索范围,在最优粒子基础上进化新一级种群,该方案可有效提高算法的收敛速度。两组数据的仿真实验表明,新算法优于传统模糊C-均值聚类算法,具有收敛速度快和解的精度高的特点。    

20.  松弛模糊C均值聚类算法*  
   文传军  詹永照《科学技术与工程》,2017年第17卷第36期
   模糊c均值聚类算法(FCM)由于样本模糊隶属度归一性的约束,导致FCM算法对噪声数据敏感。提出松弛模糊C均值聚类算法(RFCM),RFCM算法在可能性c均值聚类算法(PCM)目标函数的基础上,放弃了FCM算法单个样本模糊隶属度归一化约束,转为n个样本模糊隶属度之和为n的约束,并利用粒子群算法对样本模糊隶属度进行优化估计,使得模糊指标可拓展为m>0的情况,同时采用梯度法得到RFCM算法聚类中心迭代公式。RFCM理论分析了算法对噪声数据抗噪的原理,解释了RFCM算法模糊指标m>0的合理性,讨论了RFCM算法的收敛性。基于gauss数据集和UCI数据集的仿真测试验证了所提出算法的有效性。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号