首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
纳米钡铁氧体的柠檬酸盐法制备与吸波性能   总被引:9,自引:1,他引:9  
采用柠檬酸盐溶胶-凝胶法制备钡铁氧体.试验表明:缓慢加热至650℃,即得到结晶良好的六角磁铅型晶体BaFe12O19针状纳米颗粒,粒径50 nm,同时伴生有尖晶石型γ-Fe2O3,BaFe2O4及α-Fe2O3相;加热温度升高,BaFe12O19相增多,伴生相减少;至800℃,基本为钡铁氧体BaFe12O19晶体;快速加热至800℃,固相反应产物仍为BaFe12O19,但晶体颗粒粗大.在所试验的1-6 GHz范围内,钡铁氧体吸波性能随着微波频率的增高而加强,最佳吸波频率在6 GHz以上.  相似文献   

2.
采用溶胶凝胶自蔓延合成工艺制备了六角晶系M型钡铁氧体微粉BaFe12O19.用X射线衍射仪,振动样品磁强计和矢量网络分析仪对粉末的结构、磁性能以及电磁波吸收性能进行了表征.结果表明,BaFe12O19既能产生磁损耗,又能产生介电损耗,是一种宽频微波吸收材料.  相似文献   

3.
以硝酸铁[Fe(NO3)39H2O]、乙酸钡[Ba(CH3COO)2]和甘氨酸[C2H5NO2]为原料,采用甘氨酸溶胶凝胶-自蔓延燃烧法成功制备成BaFe12O19纳米粉末;用XRD、SEM和VSM等测试方法研究了不同条件下产物的微观形貌、晶体结构及磁学性能。研究表明,煅烧温度和甘氨酸与金属盐的摩尔比会影响单相六角BaFe12O19的形成;甘氨酸与金属盐摩尔比为3∶1的前驱体在800℃下,煅烧2 h后可得到六角片状、粒度40~50 nm的单相BaFe12O19粉末;当温度升高到900℃时,钡铁氧体颗粒长大到100 nm以上,矫顽力下降。  相似文献   

4.
通过溶胶-凝胶(sol-gel)法制备磷灰石型固体电解质La7.33Si6O26,考察sol-gel过程中水硅摩尔比(n(H2O)/n(Si))、醇硅体积比(V(C2H5OH)/V(Si))和pH等制备参数对溶胶性质的影响,并采用正交设计确定了最佳制备条件.X线衍射(XRD)分析显示,在n(H2O)/n(Si)=10、v(C2H5OH)/V(Si)=5、pH =2的最佳制备条件下可获得单相的磷灰石型晶体.试样在1 550℃烧结4h后的相对密度为93.9%,其800℃时的氧离子电导率高达5.50×10-3 S/cm,电导活化能为0.86 eV,室温至800℃测得试样的热膨胀系数为9.3 ×10-6 K-1,与普遍使用的电极材料之间具有较好的热匹配性.  相似文献   

5.
室温下利用磁控溅射法,在玻璃基片上沉积了Ti(3 nm)/Ni(30 nm)/Ti(t=3,5,7,10 nm)磁性薄膜.实验发现,500℃退火30min,覆盖层厚度t=7 nm时,样品的矫顽力达到最大.利用振动样品磁强计、扫描探针显微镜观测了样品的磁特性、表面形貌和磁畴,X射线衍射图谱表明,样品中的Ni颗粒形成了面心立方(FOC)结构.  相似文献   

6.
以鞍山铁尾矿为主要原料制备了BaO-Fe2O3-Si O2微晶玻璃,并利用DSC,XRD,SEM以及FT-IR对晶化过程和微观结构及结晶动力学进行了研究.微晶玻璃的最佳热处理制度为:700℃核化3 h,950℃晶化2 h;这样可以制备出主晶相为BaFe12O19、次晶相为BaSi2O5的微晶玻璃.微晶玻璃结构中出现了BaFe12O19的红外特征吸收峰;晶体生长指数为2.8,属三维生长;介电损耗角正切值达到了0.44,而磁损耗正切值为0.017,具有较好的微波介电特性.  相似文献   

7.
以镁橄榄石、膨胀蛭石为主要原料,以磷酸盐为结合剂,常温下制备镁橄榄石-蛭石复合材料;采用SETARAM C-80微量热分析和XRD分析了结合系统的固化反应及其反应产物, 研究困料时间、MgO种类及n(MgO)/n(P2O5)等对材料结合系统固化速率和结合强度的影响.结果表明,困料时间延长会导致试样强度降低;选用反应活性较低的烧结镁砂能更有效地提高材料的强度;n(MgO)/n(P2O5)增大,固化反应速率加快,材料结合强度增大,但n(MgO)/n(P2O5)过大,对材料结合强度反而不利.  相似文献   

8.
采用水热合成法对碳纳米管(CNTs)进行酸化处理,并且合成钡铁氧体包覆CNTs的新型纳米复合材料,使用红外光谱仪(FT-IR)对酸化CNTs的表面官能团进行表征,使用X线衍射仪(XRD)与扫描电子显微镜(SEM)对复合材料的物相和形貌进行表征。结果表明:60℃水热法酸化能有效地除去CNTs中的无定形杂质,并在表面引入大量极性基团;在200℃下,Ba2+与Fe3+摩尔比在3∶12和4∶12时,水热合成了结晶程度较高的BaFe12O19/CNTs复合材料,CNTs表面均匀地覆盖了一层BaFe12O19;随着反应体系中Ba2+比例的升高,BaFe12O19的结晶程度有相应提高。  相似文献   

9.
在加热到400°C的MgO(001)单晶基片上,用磁控溅射法沉积了25 nm厚的FePt薄膜,在Ta=[500°C,800°C]温度范围进行5 h的热处理.用X射线衍射仪、振动样品磁强计和可外加磁场的磁力显微镜分析了薄膜的结构和磁性.结果表明,未经热处理的薄膜能够在MgO(001)单晶基片的诱导下实现(001)取向生长,但仍处于无序的A1相,呈软磁性.Ta=500°C,薄膜结构没有明显改变.Ta=600°C,FePt发生部分有序化,薄膜中A1相和L10相(有序相)共存,形成一种具有磁各向异性的特殊硬磁-软磁复合体.软磁相的磁性主要表现在沿平行于膜面方向施加磁场的磁化曲线中,但矫顽力可以达到10 kOe(1Oe=103/4πA m-1),硬磁相的磁性主要表现在沿垂直于膜面方向施加磁场的磁化曲线中,矫顽力却只有5kOe.这说明薄膜中硬磁相和软磁相之间存在强烈的交换耦合,形成了磁性弹簧.当Ta提高到700°C,薄膜基本完成有序化,磁化易轴彻底转向垂直于膜面的方向,矫顽力大于20 kOe.原子力显微镜和磁力显微镜观察表明,薄膜由岛状颗粒构成,在Ta=700°C时大部分颗粒内部形成多磁畴结构,在不太大的磁场作用下依靠畴壁移动和消失变为单磁畴,磁化反转过程应该主要依靠形核.  相似文献   

10.
用化学共沉淀法制备了Fe3O4纳米微粒,并用聚乙二醇(PEG)为表面活性剂进行表面修饰,制备稳定的水基Fe3O4磁流体,考察加料方式、铁盐浓度、表面活性剂用量等条件对Fe3O4纳米微粒粒径的影响,并用红外光谱及X射线衍射表征磁性颗粒的化学成分和晶体结构.结果表明:加料方式是影响产物粒径和磁性的重要因素,反滴法制备的磁流体粒径更小,磁性更强;铁盐浓度越高,磁流体粒径越大;随PEG质量浓度增大,磁流体粒径先减小后增大;n(Fe3+)=n(Fe2+)=0.3 mol/L,c(PEG)=50 g/L为最适宜的反应条件;未经包覆的Fe3O4纳米粒子平均粒径为15 nm,PEG包覆后粒径约为20 nm,呈现出核-壳结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号