首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
基于分子动力学提出了一种光诱导介电泳控制椭球粒子运动的数值模型.研究了光电芯片中椭球粒子承受的光诱导介电泳和斯托克斯阻力,采用Runge-Kutta方法计算不同长宽比粒子的自转速度.采用COM SOL有限元计算电场,借助Velocity-Verlet算法模拟了粒子受介电泳的运动轨迹.仿真结果表明,粒子长宽比越大,转速越快;在28,30μm位置处的椭球粒子,受正介电泳力向光斑运动,且沿着电场强度梯度方向行进,最高速度可达到312μm/s.以上仿真的转动速度和运动轨迹都与实验保持了较好的一致性.  相似文献   

2.
首先介绍了光诱导技术和介电泳技术的基础理论,并以此分析了光诱导介电泳的工作原理;其次,利用COMSOL Multiphysics软件建立仿真模型,对3种不同尺寸的圆环光斑产生的电场和介电泳力进行仿真,以验证光诱导介电泳技术分离粒子的可行性,同时为实验提供参考数据;最后,进行实验操作,验证利用光诱导介电泳技术分离粒子的正确性,并通过光诱导介电泳技术实现对粒子的高效无损的分离操作。  相似文献   

3.
集成微电极结构的介电电泳芯片具有高效、非侵入式等优点,在生化样品操纵与分析中具有重要的实用价值和研究意义。从理论上分析了芯片介电电泳富集的影响因素,构建了5种微电极间距分别为20,40,60,80,100μm的微流控芯片,重点研究了微电极间距和流体流速对酵母菌细胞富集效率的影响。结果表明,当PBS缓冲液电导率50μs/cm,进样速度10μL/min,施加电压8 VP-P,8 MHz保持不变时,通过改变微电极间距,发现微距为目标细胞直径的4—8倍时富集效率最高,为90%左右;当电极间距为20μm,改变进样速度,其他条件保持不变,发现进样流速为30~50μL/min时,富集效率最高,达到87%以上。  相似文献   

4.
基于介电泳的生物粒子分离芯片   总被引:1,自引:0,他引:1  
在阐述介电泳基础理论研究成果基础上,研究了传统介电泳力、电动旋转介电泳力和行波介电泳的计算模型力,分析了克劳修斯-莫索提因子对正负介电泳的影响,给出了介电泳力的统一计算模型.研究了基于介电泳技术的多种类型的生物粒子分离芯片的研究现状,并从与芯片实验室的集成性、分离的准确性、分离对象多样性和分离对象的尺寸等综合指标,分析了基于微流体和介电泳混合作用、行波介电泳以及介电笼等方法构造的生物粒子分离芯片各自存在的问题,在此基础上提出综合应用行波介电泳和介电笼分离技术,建立面向200 nm~2 μm的微纳米生物粒子分离芯片,从而为建立满足分子芯片实验室需求的分离芯片研制提供了一个可行的方案.  相似文献   

5.
分析了介电泳芯片中粒子所受的介电泳力的影响因素,采用Comsol软件建立阵列叉指电极介电泳芯片的数学模型。通过设置边界条件,对电极的电场进行仿真并对电极的尺寸参数进行优化。为了对仿真结果进行验证,采用MEMS工艺,在ITO玻璃表面制备出叉指电极结构,并与PDMS微流通道键合之后制备出完整的介电泳芯片。采用酵母菌为实验对象,分别对交流电压以及交流电压频率对介电泳的富集效率的影响进行研究。富集效率随电极施加的电压的增大而增大;但增加到一定的程度,富集效率保持不变。改变交流信号的频率,可以改变介电泳的类型。通过调整交流信号的频率,实现了酵母菌的正负介电泳富集。酵母菌在电导率为1μS/cm的悬浮溶液中,存在两个临界频率,分别为40 k Hz、15 MHz。当交流电压的频率为2 MHz时,酵母菌细胞的富集效率最高。  相似文献   

6.
采用有限元仿真和单因素实验相结合的方法,研究了铝合金6061微尺度铣削的铣削力影响因素.建立了刀具和工件的三维模型并对其进行装配和网格划分,通过有限元仿真模拟了铝合金6061材料的微尺度铣削过程,得到了铣削速度和铣削深度对铣削力的影响规律,并进行了单因素实验研究.结果表明:随着主轴转速的不断增大,铣削力先增大后减小,转折点为24000r/min;随着铣削深度的不断增大,铣削力先增大后减小再增大,转折点为10μm和12μm;随着进给速度的不断增大,铣削力也不断增大.优选出铝合金6061材料微尺度铣削最优工艺参数组合为:主轴转速48000r/min,铣削深度5μm,进给速度20μm/s.  相似文献   

7.
表面具有大量巯基的二氧化硅微球与介孔二氧化硅一样,具有吸附重金属离子的功能。通过溶胶凝胶一步法制备巯基功能化的二氧化硅微球,该微球粒度分布均匀、成球率高,直径在1μm左右。红外和拉曼光谱证明,微球表面富含大量的巯基,超短的吸附平衡时间说明巯基与Ag+迅速螯合,而不同于介孔的扩散吸附。溶液的p H对Ag~+吸附量的影响不明显,巯基功能化的微球对Ag~+的吸附遵守Slips等温模型,最大吸附量能够达到102 mg/g,并且拟合度达到99.6%。  相似文献   

8.
采用介电泳微流控制技术,利用不同尺寸碳纳米管在流动介电液中受到的大小不等的介电泳力,从而产生不同运动轨迹实现分离.通过建立介电泳数学模型和微流控制通道几何模型,对不同尺寸碳纳米管的分离过程进行仿真研究.结果表明:电场强度、流体流速和碳纳米管受到的介电泳力在主通道内最大,不同尺寸碳纳米管的运动轨迹在主通道开始出现分离,最终从不同的出口流出;当交变电压从±5V到±30V逐渐增大时,入口1与入口2的流速和流速比也逐渐增大;相较于异丙醇,用去离子水做介电液,流体流速近似高一个数量级.  相似文献   

9.
采用有限元法进行粒子电极化强度的计算,以此得到对应的介电泳力和次级介电泳力.粒子的极化强度依托软件COMSOL Multiphysics 5.3a的AC/DC模块计算得到,粒子追踪模块用于实现介电泳力、次级介电泳力、流体力,以及排斥力的粒子动力学仿真.AC/DC模块和粒子追踪模块的多物理场耦合新方法能够满足正、负介电泳效应的粒子运动分析和研究,且粒子轨迹与常用的粒子仿真算法的运算结果有较高的相似性.同时仿真结果还表明,为了更准确地预测实验观测结果,粒子承受金属电极形成的正、负介电泳效应需要考虑次级介电泳力.  相似文献   

10.
采用分散聚合法合成了粒径为0.8μm的聚苯乙烯种子,再通过一步溶胀法制备了亚2μm甲基丙烯酸环氧丙酯微球。研究了溶胀倍数、稀释剂比例、聚合温度、搅拌速度以及致孔剂等因素对溶胀、聚合过程和最终产物形态、结构的影响。结果表明,在控制溶胀倍数为8~16,SDS 0.1%,PVA 0.5%、溶胀和聚合物温度分别为30~35℃以及70~74℃,聚合时间为18~24 h、搅拌速度为120~200r/min的条件下可合成出粒径为1.8μm的单分散甲基丙烯酸环氧丙酯微球、分散系数为0.2。而且,无孔亚2μm聚合物微球比多孔聚合物微球具有更好的耐压性,最高耐压力可以达到28MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号