首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
水解酸化-膜生物反应器处理抗生素废水   总被引:2,自引:0,他引:2  
根据抗生素生产混合废水的特点,采用水解酸化-膜生物反应器(MBR)工艺对混合废水进行了工业化实验,系统研究了多种抗生素混合废水处理工艺的运行参数和处理效果. 结果表明,当膜生物反应器的进水COD容积负荷7~10 kg·m-3·d-1时,系统的COD去除率达到90%,NH4-N和TN去除率分别达到80%和65%,出水水质满足中二级标准的要求.  相似文献   

2.
内循环UASB处理高浓度丙烯酸废水   总被引:2,自引:0,他引:2  
研究升流式厌氧污泥床(UASB)工艺处理高浓度丙烯酸废水的可行性.试验过程中在pH、温度正常稳定基础上,以不同方式提高反应器的容积负荷,直至最大值.结果表明:UASB反应器处理高浓度丙烯酸能承受的最大负荷为13.1~13.5 kg/(m3·d).在容积负荷13.1 kg/(m3·d)、进水化学需氧量(COD)为15.234g/L下反应器可稳定运行,对COD的去除效果良好,挥发性脂肪酸(VFA)为3.5 mmol/L,出水COD为0.614 mg/L,COD去除率达87.9%.  相似文献   

3.
高盐度化学制药废水预处理试验研究   总被引:2,自引:2,他引:0       下载免费PDF全文
采用"蒸馏+铁炭内电解+絮凝"工艺对某制药企业排放的废水进行预处理。经过蒸馏脱盐后,综合废水盐度(质量分数,下同)由7.4%降至0.15%;再采用"铁炭内电解+絮凝"工艺进行处理,内电解试验最佳工艺条件:进水pH值为3.0、铁炭比为4∶1(体积比)、停留时间为6 h,COD去除率达到26.5%;絮凝试验最佳pH值为9.0,COD去除率达到1.5%。废水经过预处理后,COD去除率达到28.0%,出水COD质量浓度(下同)降至20 988 mg/L,ρ(BOD)5/ρ(COD)由0.28提高至0.41。预处理出水厌氧可生化性试验表明,当进水COD质量浓度为9 000 mg/L左右时,容积负荷(COD)为1.0 kg/(m3.d),出水COD质量浓度降低至2 100 mg/L左右,COD去除率达到75.0%。说明该制药废水经过预处理后可生化性显著提高,为后续的生化处理创造了有利条件。  相似文献   

4.
采用两相厌氧工艺处理化学合成类制药废水,实验结果表明:产酸相进水COD多在14000~20000mg/L之间(平均为17883mg/L),容积负荷在30~42kgCOD/m3·d之间,pH值为4.8~5.2,COD去除率为32%~52%,挥发酸含量从4.12%提高到22.54%,为产甲烷相的进一步处理提供了有利条件。经过产酸相后,UASB进水COD浓度在10000mg/L左右,COD平均去除率为86.7%,出水COD浓度为1240~1550mg/L,平均容积负荷为4.5kgCOD/(m3·d),产甲烷相出水pH值在6.5~7.0左右。  相似文献   

5.
一体式膜生物反应器处理中药废水的试验研究   总被引:1,自引:0,他引:1  
针对中药废水具有COD高,水质变化大等特点,采用一体式膜生物反应器(MBR)对中药废水的厌氧反应器出水进行处理,在固定水力停留时间(HRT)为5 h的条件下,考察了进水COD质量浓度及污泥质量浓度(MLSS)与COD去除之间的关系.结果表明,当HRT为5 h,进水COD质量浓度小于3 000 mg/L时,膜出水COD小于30 mg/L,满足中水回用标准;当进水COD质量浓度为3 000~6 000 mg/L时,膜出水COD大于30 mg/L而小于100 mg/L,满足污水排放标准;当进水COD质量浓度大于6 000 mg/L,膜出水COD大于100 mg/L,不能满足污水排放标准.同时污泥质量浓度(MLSS)与COD去除的关系表明,为了达到更好的COD去除率,MBR的最佳MLSS应控制在7 543 mg/L.  相似文献   

6.
好氧法处理抗生素废水对比试验研究   总被引:1,自引:0,他引:1  
通过对比分析3种好氧活性污泥法的试验结果,表明用SBR运行工艺处理土霉素、庆大霉素发酵废水可实现高进水浓度、高容积负荷的工程处理效果:处理工艺在连续曝气、连续进出水(即普通曝气法)条件下,COD平均去除率为79.5%(进水COD浓度537.4~663.1mg.L-1,平均出水COD为128.6mg.L-1);在间断曝气、曝气期内连续进水连续出水(即间断曝气法)条件下,COD平均去除率为72.7%(进水COD浓度537.4~1544.0mg.L-1,平均出水COD浓度为315.5mg.L-1);在间歇曝气、定时进水出水(即SBR法)试验条件下,COD去除率可达78.7%~88.4%(进水COD浓度1600~12000mg.L-1,出水COD浓度357.3~2500mg.L-1).  相似文献   

7.
MBBR与活性污泥法处理石化废水的比较   总被引:6,自引:0,他引:6  
为了解生物浮动床(MBBR)在处理石化废水中的性能特征,从水力停留时间、耐负荷冲击能力和通气量等方面对MBBR和活性污泥两种工艺进行了比较,确定了MBBR工艺的最佳运行条件,即通气量为1.25 L/min,水利停留时间为8 h.当进水每天有机负荷COD在1.0 kg/m^3左右时,MBBR对COD去除率达到80%以上,出水COD小于50 mg/L;当有机负荷小于该值时,对COD的去除率较小,当每天负荷COD达到2.0 kg/m^3时,MBBR对COD去除率仍超过70%,始终高于活性污泥法,在抗负荷冲击方面也优于活性污泥法.  相似文献   

8.
内循环三相流化床的生物膜的培养   总被引:2,自引:0,他引:2  
研究了内循环三相流化床在两种不同进水方式情况下生物膜培养情况. 研究表明:间歇进水时生成的生物膜能达到200~250?m左右,连续进水时生物膜厚度能达到100?m;前者较为圆滑紧密,而后者的活性较高;较低的启动容积负荷有利于启动挂膜;挂膜完成后进水的容积负荷不能过低,否则容易因污泥负荷低而引起丝状菌膨胀. 通过间歇式进水培养的活性污泥达到了生物量9.65g·L-1(其中附着生物膜占92.7%),而连续式进水负荷COD可以达到11.45kg·m-3·d-1, 此时COD去除率达到80%.  相似文献   

9.
污水处理的固定化微生物与游离微生物性能的比较   总被引:20,自引:3,他引:20  
固定化微生物技术在污水处理中的应用已经引起越来越多的重视.本文重点研究固定化微生物处理焦化污水时的主要性能.通过对进水与出水氨氮(NH4+-N)、挥发酚及化学耗氧量(COD)的检测分析,考察了温度、pH值、氨氮和有机负荷等对固定化微生物性能产生的影响,采用电镜和光镜观察了固定化微生物的形态,并通过克氏定氮法测定了高效微生物菌群在FPUFS载体上的生物负载量,得出了固定化微生物系统去除COD、挥发酚和氨氮的工艺设计参数.结果表明:固定化微生物在温度为10-55℃、pH值4-11范围内具有较好的活性,200mg/L以上的NH4+-N以及150mg/L以上的NH3对硝化菌及亚硝化菌没有抑制.在有机负荷较高的情况下,仍具有较好的硝化作用.在满足出水中COD≤100mg/L,及NH1+-N≤15mg/L时,相应的容积负荷分别为:COD容积负荷最大为8.91kg/m3·d,NH4+-N容积负荷最大为1.16kg/m3·d.在固定化微生物系统中,生物负载量为32g/L,好氧、兼性和厌氧菌同时存,硝化和反硝化同时进行,丝状微生物较为发达,这为高浓度、难降解有机物及高氨氮污水降解奠定了基础.本文还在相同条件下与游离微生物性能进行了比较,说明固定化微生物技术在各个方面所表现出的性能都较后者具有明显的优势.  相似文献   

10.
采用厌氧-好氧膜生物反应器组合(A/O MBR)工艺,处理含酞菁染料KN-G废水.研究A/O MBR对酞菁印染废水的降解能力,以及在添加微量元素Mn和不同的进水pH值条件下的降解特性.结果表明:A/O MBR工艺对酞菁染料KN-G印染废水的化学需氧量去除率可达到90%以上,脱色率为63%;添加微量元素Mn,A/O MBR系统对酞菁染料KN-G染料的脱色率下降.当进水pH值为3.0时,平均脱色效率最高达到80%,在酸性条件下酞菁染料的脱色率优于碱性条件.  相似文献   

11.
采用缺氧-好氧MBR组合工艺对高氨氮废水处理进行试验研究,结果表明:该工艺处理效果优良,系统对浊度、COD、氨氮的平均去除率分别为99.8%、95.3%、97.2%,在回流比为3的情况下,总氮的去除率可达72.7%.该系统具有较强的抗冲击负荷的能力.  相似文献   

12.
生物强化膜生物反应器处理洗车废水   总被引:7,自引:0,他引:7  
洗车废水用水量大,而且回用水质要求较高,采用膜生物反应器(MBR)处理以保证回用水的水质,同时可缓解水资源短缺的问题.利用生物强化技术针对性强、应用灵活和效率高等特点,将高效菌生物强化技术与MBR结合处理洗车废水.在相同运行条件下运行两个MBR,其中一个MBR中投加高效菌,并对两者的处理效果进行比较.试验结果表明,用高效菌强化的MBR出水水质良好,出水的色度、化学需氧量(COD)、氨氮(NH3-N)和阴离子表面活性剂(LAS)等均优于普通污泥-MBR出水.  相似文献   

13.
膜生物反应器净化污水的硝化反硝化性能   总被引:2,自引:0,他引:2  
比较了膜生物反应器(MBR)和传统活性污泥工艺(CAS)在相同运行条件下处理生活污水的硝化和反硝化性能.结果表明,MBR对NH4 -N和TN的去除率分别比CAS高54.8%和37.3%.2种工艺的亚硝化、反硝化作用均呈零级反应,对应降解速率常数MBR分别约为CAS的2.2倍和2.5倍;CAS中硝化作用为零级反应,而MBR中硝化作用随时间推移趋于平缓.MBR中的细菌总数、硝酸菌、亚硝酸菌和反硝化菌数量分别比CAS工艺中相应菌种高1~2个数量级.通过控制曝气强度或减小回流通道断面限制缺氧区溶解氧质量浓度,可提高MBR中的反硝化效果.  相似文献   

14.
好氧颗粒污泥膜生物反应器处理畜禽废水   总被引:2,自引:0,他引:2  
采用好氧颗粒污泥膜生物反应器处理畜禽废水,分别对COD、NH4 -N、NO2--N、NO3--N的去除效果和对膜通量的影响进行了研究。结果表明:在水力停留时间(HRT)为8h,进水COD浓度为600mg/L,NH4 -N浓度为40mg/L的条件下,出水COD、NH4 -N的浓度分别为46.6和4.8mg/L。NO2--N和NO3--N的去除率也可达90%以上。并且好氧颗粒污泥的加入减缓了膜的污染。  相似文献   

15.
MBR与二段式SBR处理酱油废水的对比分析   总被引:1,自引:0,他引:1  
通过MBR与SBR处理酱油废水对比分析发现,MBR的出水COD优于二段式SBR,而二段式SBR+气浮出水COD优于MBR. SBR工艺对色度基本没有去除作用. MBR出水色度低于两段式SBR+气浮工艺.以日处理水量400 m^3的现场工程为例,对SBR和MBR的工程总投资和运行费用进行了对比分析,MBR的运行费用比SBR低22%. 但MBR的制水成本较高,使其难以推广应用.随着自来水费与排污费的提高、膜组件价格下降及寿命延长,该技术会有更快的发展. 将MBR与SBR工艺进行组合,是解决MBR现存问题的有效途径.  相似文献   

16.
基于曝气生物滤池工艺处理老龄垃圾渗滤液   总被引:1,自引:0,他引:1  
分别在小试和工业化规模上系统研究了基于曝气生物滤池(BAF)的工艺对老龄垃圾渗滤液的处理效果.在实验室中,对比传统生化处理工艺,BAF单元对COD的去除率提高了20%.将基于BAF的组合工艺(厌氧+BAF+膜生物反应器MBR+反渗透RO)应用于深圳某填埋场渗滤液处理,取得了较好的处理效果.BAF单元对COD、氨氮的去除率分别达到31%和94.2%.生物处理单元(包括BAF和MBR)对铜、锌的去除率达到70%以上,而对镍、铬、铅的去除率小于50%.RO膜对重金属的去除率均高于生物处理单元.该组合工艺既保证了生物降解的持续进行,又保证了RO膜的稳定运行.利用GC-MS对生物处理单元有机污染物成分进行了分析,并对其降解机理进行了初步探讨.  相似文献   

17.
考察臭氧氧化法处理感光废水过程中反应时间、反应温度、原水稀释倍数、初始pH值、臭氧通入量等因素对COD去除率的影响。在优化条件下,显影废水中COD去除率为61.6%、定影废水中COD去除率为72.6%。  相似文献   

18.
研究了利用不同混凝剂处理壮骨粉生产废水的最佳工艺条件。结果表明 ,选用聚合硫酸铁铝 ( PAFS)比较适宜 ,其最佳投加量为 2 0 0 mg/L ,适宜 p H值为 7~ 8,此时COD的去除率为 72 .1 %。上清液再经双层滤料柱过滤 ,COD和 SS的总去除率可分别达到 94.9%和 91 .8% ,出水 COD、SS和 p H均达到国家排放标准  相似文献   

19.
A/O MBR处理印染废水中进水pH值对降解性能的影响   总被引:2,自引:0,他引:2  
采用厌氧好氧膜生物反应器(A/OMBR),系统考察了当进水pH值在5.0~9.0范围变化时,各反应槽的活性污泥对活性艳蓝KNR染料及COD的降解性能变化情况.从而探索出在厌氧与好氧微生物协同作用下,微生物对染料及有机污染物的降解性能不受明显影响的进水pH值波动范围,为降低实际印染废水处理中化学试剂的使用量提供理论依据.结果表明,只有当进水pH值为9.0时,厌氧槽对脱色率的贡献大于好氧槽,而当进水pH值在5.0~8.0范围内变化时,好氧槽对系统脱色率的贡献大于厌氧槽.进水pH值对厌氧活性污泥的COD的去除效果几乎没有影响,而中性及偏酸性的进水条件更有利于好氧活性污泥对COD的降解.在偏碱性的进水条件下,膜对可溶性COD的截流作用更明显.当进水pH值在5.0~9.0范围内变化时,由于厌氧槽的pH值都能够稳定在6.0附近,使好氧槽和系统出水的pH值能够分别保持在7.0和7.5附近,从而保证了整个系统对染料及COD的降解性能处于最佳状态.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号