首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
非晶SiBCN陶瓷是一类独特的结构材料,具有低比重、高比强度、优异的高温损伤容限等特殊结构和性能,因此在高温防热结构部件上极具应用潜力。通过合理的结构与化学成分协同设计,可探索陶瓷形貌/微观结构演化及断裂行为的基本特征,从而进一步提高其力学性能,以满足实际应用需求。因此,文章以石墨、六方氮化硼、立方硅和硼等元素粉末为原料,提出了采用机械合金化结合高压烧结技术(1 000 oC/3~5 GPa/30 min)制备致密非晶Si2ByC2N(y=1.5~4)块体陶瓷的方法。通过XRD、SEM、TEM、TG等表征手段,研究了烧结压力诱导该系非晶陶瓷的组织结构演化、相变及热稳定性,并对其力学性能,特别是断裂行为进行了详细讨论。结果表明,提高烧结压力促使陶瓷基体由完全非晶态向晶态转变,部分块体陶瓷由大量非晶相、少量c-Si和/或t-BN(C)纳米晶相组成,显示出依赖于硼含量的物相组成。高压烧结有效地促进了陶瓷的烧结致密化,导致材料内自由体积的湮灭和“河流状”断裂形貌的产生。随着烧结压力的提高,陶瓷材料的体积密度、纳米硬度和杨氏模量单调增加。在相同烧结条件下,硼含量的增加削弱了非晶Si2ByC2N(y=1.5~4)块体陶瓷的力学性能和热稳定性。1 000 °C/5 GPa/30 min烧结制备的致密非晶Si2B1.5C2N块体陶瓷的体积密度、纳米硬度和杨氏模量分别为2.69 g/cm3、33.6±2.2GPa和414.2±16.5 GPa。  相似文献   

2.
李工  刘日平  李延春  刘景 《科学通报》2010,55(36):3489-3492
制备了含CuZr纳米相的三元Zr49Cu44Al7块体非晶合金复合材料,该材料具有1.6%的弹性变形和1.78GPa的抗压强度,利用角散射同步辐射研究了该三元块体非晶合金复合材料高压下的结构变化.结果表明,室温下非晶合金基体直至40.8GPa仍保持稳定的非晶结构,没有压力诱发CuZr纳米相的消失或长大.根据Bridgman状态方程获得了该复合材料体弹模量B0为115.2GPa.  相似文献   

3.
可以在高温氧化、剧烈热震、燃气流烧蚀等苛刻条件下服役的新型高温结构和多功能防热材料是现代航空航天技术发展的迫切需求之一.Si-B-C-N系非晶及纳米晶复相陶瓷组织结构独特,高温性能优异,在高温结构和多功能防热领域极具应用潜力.有机聚合物先驱体裂解法(有机法)在致密Si-B-C-N系块体陶瓷的制备方面受限,哈尔滨工业大学特种陶瓷研究所开创的机械合金化-热压法(无机法)工艺简单,制备材料组织结构均匀、性能优良,成为Si-B-C-N系致密块体陶瓷和耐高温构件的有效制备手段,弥补了有机法的不足,对于丰富和完善该材料的实验数据和理论研究具有重要意义.本文综述了无机法制备Si-B-C-N系陶瓷及复合材料在显微组织结构特征及演变规律、力学和热物理学性能、抗氧化性能、抗热震性能、耐烧蚀性能和相关机理分析等方面的新近成果,并展望了其发展趋势.  相似文献   

4.
李尔东  宋晓艳  张久兴  卢年端 《科学通报》2006,51(20):2448-2452
以稀土单质钐为例, 研究了通过放电等离子烧结制备晶态与非晶态结构的纳米块体材料及其形成机制. 实验获得了非晶态、晶态与非晶态双相结构的纯稀土纳米块体材料及纳米多晶块体材料. 制备的纳米多晶块体晶粒尺寸均明显小于初始纳米粉末粒径, 改变了以往由纳米粉末烧结制备块体纳米晶材料时人们关于纳米晶粒尺寸必定大于初始粉末粒径的传统认识, 为粉末烧结制备纳米块体材料提供了创新思路和制备方法. 提出的材料制备机制及技术可推广至多种纳米块体材料的制备, 为研究稀土纳米材料的物理、化学、力学性能及其纳米尺寸效应提供了先决条件.  相似文献   

5.
软磁纳米微晶Fe_(73.5)Cu_1Nb_3Si_(13.5)B_9合金(即Finement)由其非晶薄带退火后得到。它由粒径10~20nm的α-Fe(Si)晶粒和剩余非晶相组成。其优良的性能和结构有关,而经540℃退火得到的纳米微晶具有最佳的软磁性能,此时,剩余非晶相约占30%~40%。非晶相(包括非晶与晶粒之间的界面层)对交换耦合有重要作用。本文选取Fe_(69.5)(CuCrV)_(9.5)Si_(13)B_8,Fe_(73.5)Cu_1Nb_3Si_(13.5)B_9和另一成分较简单的纳米微晶(Fe_3Si)_(0.95)Nb_(0.05),以M(?)ssbauer谱分析为主要手段,研究这3种微晶的非晶相的微结构,发现存在一个具有弱磁性的界面层,可能对交换耦合起重要的作用。  相似文献   

6.
以硼化锆(ZrB2)为代表的硼化物陶瓷以其优异的综合性能成为超高温陶瓷(UHTCs)家族中的重要成员并引起了广泛的关注,有望作为热防护结构部件应用于高超声速飞行器的鼻锥和机翼前缘等关键部位.本文从物质循环的角度,提出了硼化锆陶瓷生命周期的概念,其主要包括硼化锆陶瓷的制备和应用2个过程.硼化锆陶瓷的制备过程通常可以分为粉体的合成制备和陶瓷的烧结致密化2个主要步骤.前者的固相法制备主要涉及从原料Zr4+(O2–)2到Zr2+(B–)2的还原反应,后者则涉及第二相除氧的局部化学反应过程.此外,制备过程还包括将上述2个步骤有机结合而实现一步完成的反应烧结过程.生命周期的应用过程则发生ZrB2向ZrO2转变的氧化过程.鉴于化学反应在硼化锆陶瓷的整个生命周期中的重要作用,本文对上述生命周期各过程中涉及的化学反应分别进行了阐述.  相似文献   

7.
化学气相渗透制备SiC_w/SiC层状结构陶瓷   总被引:2,自引:0,他引:2  
提出了采用流延法(tape casting,TC)结合化学气相渗透法(chemical vapor infiltration,CVI)制备碳化硅晶须(SiCw)/Si C层状结构陶瓷的方法,分析了TC-CVI方法的特点,研究了制备工艺对层状结构陶瓷力学性能和微观结构的影响,探讨了SiCw/Si C层状结构陶瓷的强韧化机理.结果表明,TC-CVI制备方法一方面能够提高晶须体积分数,减少制备过程中对晶须的损伤并且致密化单层,保持整个制备过程中材料体积无收缩,从而有效地提高材料的强度;另一方面,TC-CVI制备方法能够较好地控制层内(晶须/基体)及层间(单层/单层)界面结合强度,进而提高材料的韧性.SiCw/Si C层状结构陶瓷中晶须含量可达40%(体积分数),其弯曲强度、拉伸强度和断裂韧性分别为315 MPa,158 MPa和8.02 MPa m1/2.层状结构陶瓷材料的单层厚度对材料致密性及层间界面结合强度产生显著影响;晶须表面状态对层内界面结合强度有重要作用.SiCw/Si C层状结构陶瓷充分发挥层状结构与晶须协同增韧作用,层间裂纹偏转,层内裂纹偏转、裂纹桥接和晶须拔出等为主要的增韧机制.  相似文献   

8.
9.
近来,纳米相复合陶瓷的研究引人关注,而一般通过机械混合引入纳米相的制备方法存在粉料难以混匀、纳米颗粒分布不均等问题.我们探索性地研究了用反应烧结引入原位生成的AlN亚微米晶粒制备AlN-Al_2O_3复合陶瓷.  相似文献   

10.
用放电等离子烧结(spark plasma sintering, SPS)方法, 烧结表面包覆纳米Al2O3的球形Al90Mn9Ce1合金复合粉末, 制备了一种高致密微胞陶瓷/金属块体复合材料, 烧结温度只有520℃. 该材料由蜂窝状封闭Al2O3陶瓷胞壁和Al90Mn9Ce1合金胞体组成, 胞体尺寸约为20~40 μmm, 胞壁壁厚1~2 μm. 材料抗压强度达到514 MPa, 压延塑性约0.65%. 这种特殊结构预示可能具有极好的耐腐蚀性能及耐热性能. 这种微胞结构Al90Mn9Ce1/Al2O3复合材料的成功制备, 为新型陶瓷/金属复合材料的设计提供了新思路.  相似文献   

11.
姚斌 《科学通报》1995,40(19):1763-1763
由于纳米Fe-Mo-Si-B合金优异的软磁性能,近年来,人们对非晶合金(Fe_(0.99),Mo_(0.01))_(78)Si_9B_(13)(FMSB)的晶化机制、结晶相、晶粒度及纳米合金的性能进行了深入的研究.这些研究工作都是在真空条件下,非晶FMSB合金条带表面为自由表面的情况下开展的.为了克服由非晶FMSB合金晶化制得的纳米Fe-Mo-Si-B合金的脆性,使之能在实际中得到应用,我们利用静高压下等温热处理金属Al片与非晶FMSB叠层的方法,制备出Al/Fe-Mo-Si-B纳米合金复合材料.由于在制备中,非晶FMSB与Al片将在界面发生扩散反应,因此,势必影响非晶FMSB的晶化过程和结果.本文将就此问题进行研究.  相似文献   

12.
袁力建 《科学通报》1989,34(20):1547-1547
氮化硅(Si_3N_4)陶瓷以其优异的力学、热学性能跻身于最有发展前途的高温结构材料的行列。但它毕竟属于脆性材料。纤维补强是改善陶瓷脆性的有效途径。经碳纤维补强的氮化硅,其断裂功和断裂韧性均成倍提高。然而热压氮化硅需要加入少量添加剂,一般在1700℃以上才能热压致密。但由于氮化硅与碳纤维在1650℃将发生化学反应而使碳纤维受  相似文献   

13.
Si3N4/BN纳米复合粉体的制备   总被引:1,自引:0,他引:1  
采用化学溶液法, 溶解分散H3BO3, CO(NH2)2及α-Si3N4微粉制成悬浮液, 干燥后以氢还原氮化法制备出纳米氮化硼包覆微米氮化硅的Si3N4/BN纳米复合粉体. 利用X射线衍射(XRD)和透射电子显微镜(TEM)对复合粉体的形成过程及形貌结构研究发现: 当反应温度为1100℃时, 包覆层中除在临近α-Si3N4颗粒表面有少量涡流状氮化硼(t-BN)生成外, 其主要组成部分为非晶态BN. 以上复合粉体经1450℃氮气氛下处理后, 非晶态氮化硼与涡流状氮化硼转化为h-BN. 所制复合粉体经1800℃热压烧结获得加工性能良好的复相陶瓷.  相似文献   

14.
Si_3N_4的氧化预处理对浆料流变性及多孔陶瓷性能的影响   总被引:1,自引:0,他引:1  
以α相Si3N4粉为原料,通过氧化预处理改善Si3N4粉体表面性质,制备具有高固相含量、低黏度的陶瓷悬浮体,添加5%(质量百分比,下同)Y2O3为烧结助剂,经注浆成型工艺及液相烧结工艺制备多孔Si3N4陶瓷.研究了不同预处理温度对Si3N4粉体表面化学性质、浆料流变特性及对多孔陶瓷的影响.在低于850℃的温度下对Si3N4粉末进行处理,在表面得到了以Si2N2O为主的涂层;随着温度的增加,涂层中的Si2N2O含量增加,Si3N4含量降低,750℃以后Si3N4消失,出现SiO2.当氧化预处理温度为850℃时,Si3N4浆料的黏度由原始粉料的1680 mPa s降至30 mPa s.粉料表面氧含量的增加导致了烧结时液相量的增加,促进了致密化,同时也抑制了β-Si3N4的成核,液相量过高时,形成低长径比、大尺寸的β-Si3N4晶粒.因此氧化处理时需要选择适当的条件,在降低浆料黏度的同时保持一定的气孔率.  相似文献   

15.
采用金刚石压砧高压装置(DAC), 对高压合成的高温超导体母体相CaCuO2无限层结构的多晶粉末样品, 进行了高压能散X射线衍射实验. 实验结果首次表明, 在0~30 GPa压力范围内, 无限层结构的CaCuO2的晶体结构保持稳定, 没有发生相变; 根据压力和体积压缩率数据, 用Birch-Murnaghan状态方程拟合, 得到压力导数B0′= 4时, 零压体弹模量B0 = 181.4±9.4 GPa.  相似文献   

16.
温树林 《科学通报》1983,28(5):281-281
SIALON可由公式Si_(6-X)Al_xO_xN_(8-x)表达,这里x代表Al或O取代Si_3N_4中Si或者N的量。作为极端的情形,x=0时,具有上述公式的化合物就是Si_3N_4,事实上,作为SIALON,x最大值x_(max)=4.2。以前的研究表明,β-SIALON的物理性质相似于具有高力学性能的β-Si_3N_4,而化学性能则相似于具有很好抗氧化性能的氧化铝。由于含有低量 Al_2O_3和Y_2O_3的β-SIALON具有非常高的强度并易于烧结,用高分辨电镜这一新技术来研究其原子水平上的结构很值得。  相似文献   

17.
徐友仁 《科学通报》1987,32(5):386-386
氮化硅陶瓷作为热机用高温结构材料必须具备较高的高温强度和高温断裂韧性。最近的研究表明,以稀土氧化物作为烧结添加剂,有利于改善氮化硅的高温力学性能,其中添加Y_2O_3,和La_2O_3的热压氮化硅的抗弯强度能从室温一直保持到1300℃。但是稀土氧化物添加剂对氮化硅陶瓷的高温断裂韧性有何影响,至今未见报道。为研究稀土氧化物对高温断裂韧  相似文献   

18.
谢存毅 《科学通报》1994,39(17):1554-1554
内耗测量可以给出陶瓷材料内部结构扩散以及晶界的力学行为等性能.有关陶瓷材料的高温内耗早有不少报道.近来纳米陶瓷/氧化物的研究越来越引起人们的关注,纳米ZrO_2和SnO_2块体的低温内耗已做了一些研究.纳米Al_2O_3可广泛应用于制作催化剂及催化剂载体,精细陶瓷和荧光材料等,关于它的一些性能已作了不少探索,然而纳米Al_2O_3固体的内  相似文献   

19.
冯松林 《科学通报》1994,39(18):1662-1662
非晶态Fe_(73.5)Cu_1Nb_3Si_(13.5)B_9合金在晶化温度以上退火,可以形成由直径10—20nm、具有体心立方结构的Fe(Si)固溶体微晶及4—5个原子层厚的晶界非晶相组成的纳米微晶合金.与非晶态合金相比,具有饱和磁感强度高、矫顽力低、高频损耗低等优点,是一种综合性能极佳的新型软磁材料.  相似文献   

20.
结构陶瓷大多应用于一些普通材料无法正常使用的特殊环境,在这些环境下常规的测试方法和测试仪器难以准确获得其力学性能参数.本文论述了结构陶瓷在典型应用条件下力学性能评价的一些难点问题和新的研究进展,如界面和表面性能评价、超高温极端环境下材料力学性能评价、陶瓷管材和环状脆性材料的力学性能检测、陶瓷涂层力学性能等.介绍了这些特殊条件下的结构陶瓷关键力学性能的测试新技术与技巧,如十字交叉法、局部受热同步加载法、缺口环法、相对法和痕迹法等多种新评价技术.以Ti3SiC2-Al2O3十字交叉样品、SiC/C复合材料、ZrO2光纤套管、SiC涂层和玻璃为实验对象,测试结果表明这几种新技术操作简单、准确可靠.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号