首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
1.单细胞DNA测序 随着微流控技术和罕见细胞分离技术的进步,以及对这类棘手单基因组破译能力的提高,单细胞DNA测序研究在2012年悄然崛起,并有望在2013年获得重大突破.更令人兴奋的是,通过对单个完整细胞的研究,有望进一步提升对脑细胞是如何工作的了解.在新的一年中,单细胞测序的应用前景广阔,或可更多地揭示肿瘤内癌细胞及细胞内基因副本的差异,包括产前检查等应用技术也有望取得持续进展.  相似文献   

2.
<正>纳米通道单分子检测技术受启发于Coulter计数法与单通道离子电流测量技术,自被提出以来得到了迅速的发展,受到了国内外广泛关注.作为一种研究单个分子行为的技术手段,纳米通道技术已经应用于研究DNA损伤、分析单个多肽结构及蛋白质构型、探测识别单个DNA与靶分子间相互作用、有机小分子化合物和水体中金属离子超灵敏检测等方面,通  相似文献   

3.
单个体电化学通过在限域电化学测量界面上检测单个纳米粒子、单个脂质体、单个细胞等的电化学特性,实现对单个体各向异性的研究.这种高度灵敏的电化学方法能够快速测量并区分纳米级单个体的大小和表面电荷等.目前,已在单颗粒催化、环境监测和细胞分析等领域得到应用.本研究通过使用尺寸可控的石英纳米孔作为模板,将贵金属金沉积在石英纳米孔尖端,以形成用于单个体测量的纳米级电化学限域界面,从而制备具有高灵敏度的闭合式无线纳米孔电极.利用该电极构建了单个体电化学测量体系,实现了单个外泌体的检测,获得了信噪比高达25.1的单个外泌体碰撞信号,电化学测量平均电流幅值为15.1 pA,单个信号持续时间为0.4 ms,从而实现了单个外泌体与纳米电极间动态相互作用的实时测量.  相似文献   

4.
利用“蘸笔”纳米刻蚀技术(DPN)可在金、硅和氧化硅等较硬的固相衬底表面上制作不同的纳米级图案. 但是, 在柔软的物体表面如生物大分子上直接制作纳米图形是尚需开拓的研究领域. 本文发展的动态组合模式“蘸笔”纳米刻蚀技术(CDDPN)可实现在生物大分子上直接制作纳米图形, 并且能达到在拉直的单个DNA分子上制造纳米图形的目的.  相似文献   

5.
1977年,Sanger及其同事发明出最早的DNA测序技术,1990年开始的人类基因组计划催生了DNA测序技术的自动化.近10多年来,新一代测序技术得到了飞速的发展,测序速度及测序通量的巨大提升使得个人基因组的测序成本急剧下降,达到了1000美元一个全基因组的水平,从而使得DNA测序技术在生命科学研究领域以及临床医学上有着更广阔的应用前景.近来出现的第三代测序技术具有测序过程中无需PCR扩增而且产生非常长的测序片段的优势.尽管其测序的准确性只达到85%左右且成本高,但仍然显示出了较好的前景."精准医学"时代的来临将进一步促进DNA测序技术的革新,并使个人基因组测序成本进一步下降,有望使个人基因组测序成本进入百美元的时代.随着海量的测序数据的积累,如何有效地分析和解读这些测序数据面临着巨大的挑战,生物信息学在此过程中扮演着关键的角色.  相似文献   

6.
<正>近些年来人工纳米孔材料的设计和开发越来越受到人们的广泛关注并且有希望应用到DNA检测中.我们报道了一个新技术利用锥形纳米孔来测定小片段的DNA.本方法利用目标DNA和与链霉亲和素结合的DNA探针自组装形成蛋白质二聚体,通过电阻脉冲法实现对二聚体的特异性检测本方法还可以通过改变自组装的对象  相似文献   

7.
自组装DNA/纳米颗粒分子逻辑计算模型   总被引:1,自引:0,他引:1  
张成  杨静  许进 《科学通报》2011,56(27):2276-2282
将AuNP 自组装聚合色变与DNA 计算相结合, 构建了纳米分子逻辑计算模型. 使用了DNA 自组装、DNA/AuNP 结合和AuNP 聚合色变等关键技术方法. 利用DNA 自组装结构变化,通过DNA/AuNP 聚合色变反应, 实现了简单逻辑运算功能. 在此基础上, 构建了求解简单集合运算的DNA/AuNP 计算模型, 对多重输入的简单集合运算进行了逻辑运算. 最后, 进一步拓展该分子逻辑运算模型的应用, 结合分子检测技术, 对H1N1 病毒基因进行检测.  相似文献   

8.
新年第一期出版的国际纳米界权威杂志《纳米通讯》封面一反以往的虚拟画面,而是三个“笔迹”稍有歪扭的“DNA”字母。这3个字母可不是用笔写出来的,而是通过纳米操纵技术,用单个DNA分子长链书写的,每个字母长仅300纳米、宽200纳米。日前,《纳米通讯》用整整4页篇幅,图文并茂地报道了这项纳米科技与生物学结合的重大突破。  相似文献   

9.
郭雪峰 《科学通报》2023,(17):2146-2147
<正>单分子作为物质世界中独立稳定的基本单元,是构造物质的基因,是最稳定的量子化单元,是调控生命过程的关键,具有丰富的科学内涵.单分子科学与技术是人类极限的挑战和各国竞争的制高点,其发展可广泛推广和应用到其他领域,可解决物理、化学和生命科学等领域存在的许多关键科学问题,具有重要意义.过去数十年间,得益于纳米尺度加工技术等实验方法的迅速发展,研究者已经在实验室成功构筑出模型器件,实现了对单个分子、团簇、超分子的物理化学性质的实验表征.基于此,一系列不同于宏观材料性质的新奇物理化学特性已经被报道.  相似文献   

10.
葛志磊  樊春海  YAN Hao 《科学通报》2014,59(2):146-157
DNA纳米技术是一种自下而上的分子自组装模式,由分子构造为起点基于核酸分子的物理和化学性质自发地形成稳定结构,遵循严格的核酸碱基配对原则,使得DNA被用作构建结构的材料基元而不是在活细胞中那样作为遗传信息的载体.通过合理地设计碱基链来达成精密控制的纳米级复杂结构的目的,研究人员在这个领域已经建立起诸多二维、三维的复杂纳米结构以及各种具有不同功能的分子机器,比如DNA计算机.本文总结了近年来DNA纳米自组装方面取得的最新进展,同时介绍DNA纳米自组装的几种不同组装方法,并对其相关应用进行了展望.  相似文献   

11.
王春梅  孙洁林  龙飞  赵俊  胡钧 《科学通报》2010,55(6):457-462
增强单分子成像的信噪比(SNR)对单分子精细结构的识别和分辨率的提高具有重要意义. 目前单纯依靠硬件技术的改善无法突破固有限制, 众多研究表明, 图像处理技术是进一步提高单分子成像SNR的重要方法. 原子力显微镜(AFM)的单分子成像具有独特优势, 至今还未有利用图像处理方法改进低信噪比单分子图像的报道. 本文以单个DNA分子为典型样品, 针对操纵及弹性研究等方面的独特研究基础, 以时间平均法替代电子显微镜等技术中针对可重复形态制样的单分子的分类平均法, 对单个DNA分子的AFM时间序列图像采用图像配准和时间平均方法, 有效改善了图像的信噪比, 能够恢复背景中与噪声量级相当的信号. 结合其他技术, 本方法可实现图像精细结构的进一步解析和识别应用, 有望在AFM单分子操纵中起到重要作用. 本文描述的基于图像配准和信噪比评估的方法具有普适性, 可应用于AFM成像质量及状态的定量评估表征中.  相似文献   

12.
超薄薄膜纳米孔材料由于其优异的物理和化学特性,在物理学、生物学、电子学和纳米科学等多学科领域应用潜力巨大.高效、便捷和可控的制孔方法对于获得高品质的纳米孔尤为重要,而载能重离子辐照不仅是一种强大的材料改性手段,也是一种独特的纳米孔制备方法.近年来,北京大学重离子物理研究所在基于载能重离子辐照技术研制超薄薄膜纳米孔技术方面的进展显著,所用材料包括传统有机高分子膜与新型二维材料.本文主要从核径迹刻蚀有机薄膜纳米孔的制备技术和二维材料纳米孔制备技术两方面展开介绍,分别阐述了这两种技术的制孔方法、改性方法和对应的纳米孔材料在能量转化、分子检测、离子运输、纳米流体等领域的应用,为进一步深入研究载能重离子制备其他人工固态纳米孔提供了参考.  相似文献   

13.
蛋白质测序,即蛋白质一级结构的测定,是生命科学和医学领域重要的课题.蛋白质测序技术的发展,有助于更深刻地把握生命活动的规律以及实现疾病的早期诊断和精准治疗.以Edman降解法和质谱分析为代表的主流方法,可以有效地确定蛋白质的序列,应用广泛.然而,用这些传统方法测定极低浓度的蛋白质序列尚具挑战.另一方面,以平行荧光测序和纳米孔测序为代表的新方法,显示了单分子级别的测序灵敏度,有很大的发展前景.本文介绍了蛋白质测序的主要思路,着重阐述了高灵敏的测序新方法,并对该领域作出展望.  相似文献   

14.
纳米孔道技术以其与单个分子尺寸匹配的、化学环境精准可控的传感界面以及逐个读取单个分子的特征,兼具高空间分辨特性、单分子特性和高通量特性.本文结合这三个特性,探讨了纳米孔道构建“单分子时间组学”的潜在优势与挑战.  相似文献   

15.
单个病毒的三维操作对自下而上开展单分子尺度的细胞免疫学研究具有重要的意义,然而受操作工具及操作方法的限制,该问题一直未能得到很好的解决.以基于原子力显微镜的纳米操作机器人为基础,开展了针对单个病毒分子的三维操作研究,具体包括:高均匀分散性病毒样品制备方法,基于局部扫描的病毒三维操作结果实时检测策略,以及微观尺度下病毒三维空间的定点放置实现.实验结果表明,本文提出的操作方法与技巧,不仅能够实现单个病毒分子在三维空间内的可控定点拾取与释放,还可与二维操作方法相结合,构建出全病毒分子的三维纳米结构,实验结果验证了所提方法的正确性和有效性,从而为自下而上的细胞免疫学开展提供了可行的技术途径.  相似文献   

16.
利用DNA分子自组装技术可以构建从一维到三维不同形状的纳米结构,并且这些结构在微纳米电子学、纳米生物学等众多领域有许多潜在的用途.本文利用DNA分子瓦(tile)自组装技术,采用双交叉(DX)DNA分子瓦成功组装了一维DNA纳米管结构,聚丙烯酰胺凝胶电泳(native-PAGE)、透射电子显微镜(TEM)、荧光显微镜和原子力显微镜(AFM)对制得的DNA纳米管结构进行了表征,结果表明,组装成功的DNA纳米管直径在7~20nm之间,长度最长可以达到50μm以上.为了结构更加稳定,对分子瓦中每条DNA单链的5′末端进行磷酸化处理,自组装完成后利用T4DNA连接酶连接磷酸化修饰的DNA纳米管的缺口.AFM结果显示,使用T4DNA连接酶处理后的DNA纳米管更能保持完好的管状结构,表明连接处理后的DNA纳米管更加坚固,促进了DNA纳米管应用于微纳米领域的研究.  相似文献   

17.
pBR322质粒DNA的原子力显微镜成象及剪切研究   总被引:1,自引:0,他引:1  
田芳  李建伟  王琛  白春礼 《科学通报》1997,42(9):986-990
研究DNA分子间和分子内相互作用力,可以帮助人们了解DNA分子的结构及其功能.由于对这些相互作用力进行直接测量时,不仅需要控制体系的稳定性,同时外加作用力又不能对体系产生影响.因此,目前只是利用X射线,光散射和核磁共振等手段对作用力进行直接的物理或热力学测量.虽然渗透压技术已经应用到DNA双螺旋非特定分子间力的测量,但对于具有特定取向的复杂分子相互作用,就需要在单个分子间进行直接测量.原子力显微镜(AFM)可以检测到10~(-14)N数量级的针尖-样品相互作用力,横向分辨率可达0.01nm,而接触面积只有10nm~2,并且可以在近生理溶液条件下操作,因此它是非常适合研究DNA分子间相互作用力的.事实上,利用AFM研究Biotin-streptavidin体系中的单个分子间相互作用以及DNA双链间的相互作用力已有报道.  相似文献   

18.
随着分子成像技术和各种纳米生物材料的迅速发展,医学影像技术有望对人体疾病实现从器官、组织水平到细胞、分子水平全方位、多层次在体实时观察.通过基于分子靶标的肿瘤早期诊断、革命性的肿瘤分子分型以及肿瘤边界确定和术中手术导航的全面开展,实现精准医学.超声分子影像是分子影像学的一个新的分支,在近10年发展迅速.液气相变型超声分子探针凭借其良好的穿透性以及诊疗一体化等优点,已显示出其优于传统超声分子探针的众多优势,在基础与临床应用方面展现出巨大潜力.本文对液气相变型超声分子探针的相变机制以及近几年在生物医学应用领域的研究进展进行了综述.  相似文献   

19.
二维过渡金属硫族化合物(2D TMDs)在气体传感方向的应用中具有显著的"先天"优势,表现出如灵敏度高、响应速度快、能耗低以及能在室温下工作等诸多优点.相对单一的2D TMDs而言,基于2D TMDs纳米异质结的气体传感器展现出更加优越的气体传感性能.本文将系统总结2D TMDs纳米异质结气体传感器的研究进展,尤其是2D TMDs与金属氧化物、金属硫化物、碳基纳米材料以及量子点之间形成的纳米异质结设计、构效关系以及传感机理等关键科学问题.传感材料和传感机制上的创新对提升传感性能并拓展传感功能具有重要的科学意义.通过对纳米异质结气敏机理的深入探究,有望实现纳米异质结结构的人为设计和可控制备,提高室温下对目标气体的高灵敏选择性识别和检测.在纳米异质结的结构设计上,以TMDs材料为导电主体,在其表面生长各种纳米结构,通过对纳米异质结表面酸碱性、功函数、气体分子极性以及纳米异质结与气体分子之间的氧化还原反应性质进行调控,来构筑基于TMDs的纳米异质结.此外,控制负载在二维TMDs上纳米颗粒尺寸小于两倍电子耗尽层厚度,充分发挥纳米颗粒量子限域效应,以纳米颗粒充当传感的"天线分子"或"探针分子",实现对目标气体分子的高灵敏选择性识别和检测.  相似文献   

20.
薛晗  高西辉  张川 《科学通报》2019,64(10):1053-1066
随着多个功能性核酸药物获得FDA的批准,基因治疗近年来取得了长足的进步,迸发了新的青春.小干扰核糖核酸(siRNA)是基因治疗的核心成员,siRNA的高效递送则是其临床转化的关键.不同于传统阳离子脂质体、聚合物等通过静电相互作用实现siRNA的负载压缩形成纳米递送体系,DNA纳米结构通过核酸亲和杂化作用负载功能性核酸,实现siRNA的递送和相应的基因治疗.本文简要回顾了siRNA在基因沉默过程中的功能和机制,介绍了DNA纳米结构作为载体用于功能性核酸递送的基本原理和优缺点,进而详述了几类具有特色的DNA纳米结构用于siRNA递送系统,最后探讨了现有技术存在的挑战,并对本领域的发展做了进一步展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号