首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
药用植物作为中药和世界传统药物的主要来源,面临着资源稀缺和活性成分含量低等问题.通过转录水平调控发育相关基因及活性成分合成途径酶基因表达是实现定向、高效调节药用植物生长及活性成分合成的有效手段之一.因此,近年来转录因子调节药用植物发育及活性成分合成的研究备受关注.转录因子AP2/ERF家族是植物最大转录因子家族之一,家族成员均包含保守AP2结构域,根据结构域数量和识别序列不同,AP2/ERF家族被分为5个亚家族:AP2(APETALA2),ERF(ethylene-responsive factor),DREB(dehydration-responsive element binding proteins),RAV(related to ABI3/VP1)和Soloist.本文重点综述转录因子AP2/ERF调控药用植物活性成分生物合成、发育、胁迫响应的研究进展,阐述了转录因子AP2/ERF调控靶基因和自身受到调控的作用机制,同时总结转录因子AP2/ERF研究方法,提出组学和生物信息学方法成为分离、筛选转录因子,预测转录因子功能的强大工具,为分析、预测、验证药用植物AP2/ERF家族成员的功能和阐明AP2/ERF的调控机制提供理论基础和方法指导.转录因子AP2/ERF的功能研究及其作用机制的揭示将有助于利用代谢调控手段提高药用植物活性成分产量,有利于药用植物优良品种的培育,为满足人们对天然药物的需求奠定基础.  相似文献   

2.
植物转录因子的结构与调控作用   总被引:77,自引:1,他引:76  
刘强  张贵友  陈受宜 《科学通报》2000,45(14):1465-1474
植物各种诱导型基因的表达主要受特定转录因子在转录水平上的调控。典型的转录因子含有DNA结合区、转录调控区、寡聚化位点及核定位信号区等功能区域。这些功能域决定转录因子的功能、特性、核定位及调控作用等,转录因子通过这些功能域与启动子顺式作用元件结合或与其他蛋白的相互作用来激活或抑制基因的表达。植物转录因子的结构与功能成为近年来植物分子生物学等研究领域的重要内容。  相似文献   

3.
光敏色素是植物中感受红光和远红光的光受体,而光敏色素A(phyA)是植物中唯一感受并响应远红光信号的光受体。phyA以Pr形式在细胞质中合成,接受光照后被激活,转换为具有生物活性的Pfr形式。Pfr形式的phyA与穿梭蛋白FHY1/FHL结合并被转运进入细胞核,在细胞核中与FHY1/FHL分离;FHY1/FHL出核,进行下一个转运phyA进入细胞核的循环。近年发展的phyA数学模型指出,phyA受体Pr与Pfr形式间的转换,以及特异性依赖FHY1/FHL转运进入细胞核,决定其成为植物远红光的光受体。在细胞核中,激活形式的phyA与COP1和SPA蛋白直接相互作用,抑制其形成有功能的E3泛素连接酶复合体;从而使转录因子HY5等蛋白能够积累,促进光形态建成的发生。Pfr形式的phyA也可以与转录因子PIFs相互作用,并介导PIFs的快速磷酸化和降解,从而解除PIFs对光形态建成的抑制作用。FHY3和FAR1是转座酶衍生的一类转录因子,能够在远红光下直接激活FHY1/FHL的基因表达;而HY5能够负反馈调控FHY3/FAR1对于FHY1/FHL的转录激活作用,从而维持远红光信号的动态平衡。Pfr形式的phyA在细胞核内能够被磷酸化,磷酸化的phyA是COP1/SPA的E3泛素连接酶复合体优先降解的底物;而最新的研究表明,磷酸化的phyA可能是一种活性更强的形式,在诱导植物远红光信号响应中扮演重要的角色。  相似文献   

4.
周杨杨  李继刚 《自然杂志》2019,41(3):188-196
光敏色素是植物中感受红光和远红光的光受体,而光敏色素A(phyA)是植物中唯一感受并响应远红光信号的光受体。phyA以Pr形式在细胞质中合成,接受光照后被激活,转换为具有生物活性的Pfr形式。Pfr形式的phyA与穿梭蛋白FHY1/FHL结合并被转运进入细胞核,在细胞核中与FHY1/FHL分离;FHY1/FHL出核,进行下一个转运phyA进入细胞核的循环。近年发展的phyA数学模型指出,phyA受体Pr与Pfr形式间的转换,以及特异性依赖FHY1/FHL转运进入细胞核,决定其成为植物远红光的光受体。在细胞核中,激活形式的phyA与COP1和SPA蛋白直接相互作用,抑制其形成有功能的E3泛素连接酶复合体;从而使转录因子HY5等蛋白能够积累,促进光形态建成的发生。Pfr形式的phyA也可以与转录因子PIFs相互作用,并介导PIFs的快速磷酸化和降解,从而解除PIFs对光形态建成的抑制作用。FHY3和FAR1是转座酶衍生的一类转录因子,能够在远红光下直接激活FHY1/FHL的基因表达;而HY5能够负反馈调控FHY3/FAR1对于FHY1/FHL的转录激活作用,从而维持远红光信号的动态平衡。Pfr形式的phyA在细胞核内能够被磷酸化,磷酸化的phyA是COP1/SPA的E3泛素连接酶复合体优先降解的底物;而最新的研究表明,磷酸化的phyA可能是一种活性更强的形式,在诱导植物远红光信号响应中扮演重要的角色。  相似文献   

5.
张婷婷  李迪  李万杰  王跃  桑建利 《科学通报》2008,53(15):1793-1801
CaSfl1作为白色念珠菌中新鉴定出来的一个转录因子, 已被证明参与了细胞的丝状生长以及细胞的絮凝, 并且对菌丝生长相关基因的转录起到负调控作用. 本研究通过基因敲除的方法获得了Casfl1Δ/Δ缺失突变体, 证实了CaSFL1的缺失的确会导致细胞的丝状生长以及细胞的絮凝. RT-PCR结果表明, CaSfl1作为转录因子, 除了对与细胞形态相关的HWP1, ECE1, ALS1, ALS3, FLO8基因的转录水平起负调控作用外, 还对热激蛋白HSP30, HSP90在应激条件下的转录水平起正调控作用. 可以推测, 在白色念珠菌中, CaSfl1既能促进转录, 同时也能抑制转录, 即具有双重转录调控作用.  相似文献   

6.
段洪超 《自然杂志》2017,39(1):19-24
中心法则是现代生物学的理论基础之一。绝大部分生命体将遗传信息储存在DNA中,遗传信息通过转录流向RNA,再通过翻译流向蛋白质。随着研究的深入,人们逐渐认识到RNA不只充当了遗传信息由DNA流向蛋白质的桥梁,RNA层面的转录后调控过程还对基因表达进行了更为精准高效的调节,RNA在中心法则中的核心地位越来越突出。在转录后调控过程中,RNA修饰起到了至关重要的作用。对RNA修饰及其修饰酶、脱修饰酶和结合蛋白的研究已成为一个引人瞩目的新方向——RNA表观遗传学/表观转录组学。N~6-甲基腺嘌呤(m6A)是目前研究最为深入的RNA修饰。本文着重介绍m6A修饰对干细胞的分化过程的调控,对病毒侵染宿主和自我复制过程的影响,以及m6A在果蝇性别决定中起到的关键作用。RNA修饰对于其他各种生命过程的影响也在不断地被揭示出来,预示着RNA修饰的研究必将深刻地影响医疗、制药,乃至农业的发展。  相似文献   

7.
乙烯信号转导通路研究   总被引:1,自引:0,他引:1       下载免费PDF全文
张存立  郭红卫 《自然杂志》2012,34(4):219-228
作为5大类植物激素之一的乙烯一直是科学家关注和研究的焦点。虽然结构简单,但是气态激素乙烯在植物的生长发育以及胁迫反应中具有重要的作用。通过近20年的研究,科学家已经描绘出一条近似线性的乙烯信号转导通路。在模式植物拟南芥中,这条通路的最上游是由一个多基因家族编码的乙烯的5个受体ETR1, ETR2, ERS1, ERS2和EIN4。与之相结合并共同定位于内质网上的是一个类似Raf的蛋白激酶CTR1。在没有乙烯存在的条件下,受体和CTR1的结合能够协同抑制下游乙烯信号。在这两类负调控因子的下游是乙烯信号的正调控因子EIN2。如果EIN2基因突变,即使有高浓度乙烯存在,植物黄化苗也将表现出完全的乙烯不敏感表型,显示出EIN2在乙烯信号通路中的核心地位。在EIN2的下游是乙烯信号的转录因子家族EIN3以及EILs,它们在响应乙烯信号之后会起始乙烯相关基因的表达。研究还发现,乙烯的转录因子受泛素化降解途径调控,负责识别及结合EIN3等转录因子的F box蛋白是EBF1和EBF2。EIN5是一种5’→3’外切核酸酶,它能够通过促进EBF1和EBF2的mRNA的降解来拮抗这两个F box蛋白对EIN3的负反馈调控。最近,有研究表明EIN2同样是一个半衰期很短并经由泛素化降解途径调控的蛋白,而执行调控EIN2任务的是另外两个F box蛋白ETP1和ETP2。虽然人们对于乙烯信号转导通路的认识取得了巨大进步,但是该信号通路的精细调节机制以及乙烯信号与其他植物激素信号之间的交叉反应还需进行更为深入的研究。  相似文献   

8.
干旱高盐及低温诱导的植物蛋白激酶基因   总被引:17,自引:1,他引:16  
刘强 《科学通报》2000,45(6):561-566
干旱、高盐和低温是严重影响作物生长发育及产量的3种不同形式的环境胁迫因子,它们都影响细胞的水分状态,使植物缺水遭受危害。最近从模式植物菌芥中克隆了一些同时受干旱、高盐及低温诱导的蛋白激酶编码基因,分别编码受体蛋白激酶、促分裂原活化蛋白激酶、核糖体蛋白激酶以及转录调控蛋白激酶。  相似文献   

9.
干旱、高盐及低温诱导的植物蛋白激酶基因   总被引:5,自引:0,他引:5  
干旱、高盐和低温是严重影响作物生长发育及产量的3种不同形式的环境胁迫因子,它们都影响细胞的水分状态,使植物缺水遭受危害. 最近从模式植物拟南芥中克隆了一些同时受干旱、高盐及低温诱导的蛋白激酶编码基因,分别编码受体蛋白激酶、促分裂原活化蛋白激酶、核糖体蛋白激酶以及转录调控蛋白激酶. 着重介绍这些环境胁迫诱导基因的表达特性以及它们的编码产物在植物对上述环境胁迫反应和信号传递中的调控作用.  相似文献   

10.
植物的个体发育过程中均存在一个需光的光形态建成过程,光作为一种重要的植物生长发育的调控因子,对植物的生长发育有很大的影响。光作为一种因子用于调控植物的组织培养虽有一段研究历史,并一致认为光对植物组织培养有一定的调节作用,但其作用的机理仍在探讨之中。  相似文献   

11.
张渝英 《科学通报》1988,33(24):1895-1895
真核细胞的依赖于DNA的RNA聚合酶Ⅱ在无蛋白质因子存在的条件下,在体外不能忠实转录DNA。然而,令人惊异的是植物来源的RNA聚合酶Ⅱ能在体外忠实转录类病毒RNA,产生全链长的产物。这一发现意味着类病毒RNA能提供类似启动子的位点,以便与RNA聚合酶发生特异性的相互作用,从而正确地起始转录。毫无疑问,这一系统将是了解真核细胞RNA聚合酶Ⅱ所催化的体外转录机制的理想模型之一。  相似文献   

12.
兰花物语     
兰花是地球上最古老的植物之一,形成于冈瓦纳大陆时期。随着地球陆地分成七大洲,它们也分散到世界各地。它们的历史比恐龙长。兰花家族也是地球上最大的植物家族,全世界共有25000种兰花。兰花形态、大小各异,有的像伸出舌头的德国牧羊犬,有的像洋葱,有的像章鱼,有的像人的鼻子,有的像魔术鞋,有的像猴子,还有的像米老鼠……  相似文献   

13.
郭婧  何新建 《自然杂志》2024,(2):117-129
真核生物基因组DNA及其所包绕的组蛋白形成的核小体是染色质的基本单位。染色质的形成一方面有助于将基因组DNA组装到细胞核中,另一方面也对基因表达具有重要影响。染色质重塑因子能够利用水解ATP产生的能量调控染色质上核小体的组装、移除、滑动及组蛋白变体的置换等,从而调控基因转录和其他多种生物学过程。真核生物中的染色质重塑因子主要包括SWI/SNF、ISWI、CHD和INO80四类,这些染色质重塑因子往往以多亚基复合体的形式存在。最近的研究工作系统鉴定了植物染色质重塑复合体的亚基组成和功能,揭示了植物染色质重塑复合体相对于酵母及动物染色质重塑复合体的保守性和特异性。对于这些复合体调控基因转录分子机制的认识也在不断深入。这些发现为深入研究染色质重塑在植物生长发育和胁迫应答中的作用奠定了基础。  相似文献   

14.
在植物组织培养中,已发现物理因子光,对形态发生有一定的调控作用.  相似文献   

15.
李扬秋 Sieger  W 《自然杂志》1995,17(5):301-301
GATA是一类属于“锌指”结构家族的新发现的转录因子(G=鸟嘌呤脱氧核苷酸;A=腺嘌呤脱氧核苷酸;T=胸腺嘧啶脱氧核苷酸)。ATA-2在造血细胞的分化早期以及红系和髓系的发育中起一定的作用。为了了解GATA-2在急性髓性白血病(AML)中的作用,我们利用聚合酶链反应(PCR)方法检测86例AML病人GATA-2基因的表达情况。结果77例表达了该基因,阳性率为  相似文献   

16.
将马铃薯X病毒(potato virus X, PVX)外壳蛋白(coat protein, CP)基因(cp)编码序列中植物偏爱密码子替换成稀有同义密码子, 并将此修饰的外壳蛋白基因(cpm)及未修饰外壳蛋白基因(cp)分别置于CaMV 35S启动子后, 构建植物表达载体, 并用农杆菌介导转化烟草.Northern杂交及Run on实验结果表明, 转cpm基因烟草比转cp基因烟草发生转录后基因沉默(PTGS)的频率明显增高(从6.25%增至35%), 并且对人工接种的PVX病毒抗性显著提高.以上结果表明, 基因中密码子的替换可以明显提高转基因植株的病毒抗性.  相似文献   

17.
张贺桥  聂焱 《自然杂志》2021,43(5):349-358
在真核生物中,中介体复合物 (Mediator complex) 接收转录激活子/基因特异型转录因子携带的转录激活信号,并将之传递给核心转录机器——RNA聚合酶II,在这个过程中起到桥梁的作用。中介体复合物与RNA聚合酶II、各种通用转录因子组装成转录前起始复合物,对于真核生物几乎所有基因的转录都是必需的。中介体复合物成分复杂多变,结构柔性较强,针对它的结构生物学和转录调控机制的研究已超过30年。文章小结了中介体复合物的发现历程、功能和组成以及结构生物学方面的突出成果,并对它可能的转录调控机制进行了初步阐释。  相似文献   

18.
GcvA蛋白是LysR转录因子家族成员, 在大肠杆菌(Escherichia coli)中, 它激活编码裂解甘氨酸酶系(GCV)操纵子(gcvTHP)的表达, 这一过程受甘氨酸诱导. 在以前的工作中, 我们分别突变了苜蓿中华根瘤菌(Sinorhizobium meliloti)中90个LysR家族转录因子, 并鉴定了突变株的表型. 本研究证明了苜蓿中华根瘤菌基因组中存在2个gcvA基因gcvA1和gcvA2; 苜蓿中华根瘤菌gcvTHP操纵子的充分激活需要它们的同时存在. gcvA1对gcvTHP操纵子的激活需要甘氨酸诱导, 而gcvA2对gcvTHP操纵子的激活则不需要甘氨酸诱导, 推测苜蓿中华根瘤菌中gcvTHP表达的调控机制与大肠杆菌中的不同. 进化分析显示, 很多原细菌中都存在GcvA蛋白, 而苜蓿中华根瘤菌的GcvA1和GcvA2与大肠杆菌的GcvA的亲缘关系很远, 这也许可以解释它们gcvTHP表达调控模式的不同. 研究结果为LysR基因家族的功能提供了新的线索.  相似文献   

19.
脂肪细胞分化: 一个故事、两个章节   总被引:1,自引:0,他引:1  
吴家睿 《科学通报》2011,56(17):1327-1334
细胞分化是多细胞个体发育和干细胞实现功能活动的基本过程. 作为诱导白色脂肪细胞分化的体外模型, 小鼠3T3-L1前脂肪细胞系的定向分化过程由依赖于细胞周期特定时相(接触抑制期)的许可阶段和独立于细胞周期的执行阶段所组成. 在接触抑制期, 通过细胞代谢方式、细胞周期调控因子和细胞信号转导通路之间的相互作用, 决定了各种染色质表观遗传修饰因子的活动, 从而导致具备脂肪细胞分化潜能的染色质表观遗传修饰模式的形成. 在随后的执行阶段, 这种分化潜能被激素诱发, 通过复杂的基因调控网络的动态活动, 使各种控制脂肪细胞分化基因表达的转录因子按既定的分化时间表打开或者关闭, 并决定相关的靶基因的表达, 最终导致了脂肪细胞的形成.  相似文献   

20.
果蝇3个新的小分子非编码RNA的鉴定   总被引:1,自引:2,他引:1  
通过比较基因组和分子生物学方法分析了果蝇属中5种果蝇全基因组内含子区域的保守序列, 获得了3个新的非编码RNA基因. 其中一个为具有典型的box C/D家族保守元件及结构特征的核仁小分子RNA基因, 其功能序列可介导28S rRNA的C2673位点的核糖甲基化修饰. 另外两个为miRNA基因, 其转录序列可形成典型的miRNA前体茎环结构; 在果蝇发育的4个时期均可表达产生长度为23个核苷酸的成熟RNA分子. 结果还表明, 在长度为100~500 bp区间的黑腹果蝇基因内含子中存在396个多物种保守序列(MCIS), 这些序列除编码小分子RNA外, 还可能与影响基因转录或转录后加工的顺式元件有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号