首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
郑国锠 《科学通报》1965,10(12):1059-1059
染色体是在1848年Hofmeister从紫鸭跖草的小孢子母细胞中发现的。四十年以后才由Waldeyer把它定名为染色体。到上世纪末,染色体的研究就已经显得很突出。自1900年孟德尔的工作被再发现和1902年染色体遗传理论创立(Sutton)以后,染色体的研究更是突飞猛进,特别是最近十多年来,自Watson和Crick提出了DNA分子的双螺旋结构模型以后,染色体的研究已由细胞水平进入到分子水平,无论在染色体的结构方面或功能方面都有很大的进展。但是,  相似文献   

2.
蚕豆大M染色体长臂端部的显微切割与PCR扩增   总被引:9,自引:1,他引:9  
染色体微切与微克隆技术由于可以在分子水平上对特定染色体区域进行基因定位和结构研究,因此,当Scalenghe首次在果蝇唾腺染色体上取得成功后,很快将这种技术应用于小鼠、人的染色体上.并利用该技术对染色体特定区域从分子水平上进行详细研究,并得到很多有价值的结果.我国对人类染色体微切与微克隆也已有报道,如:夏家辉等成功地构建了人类7号染色体专特性探针池和14个染色体区带特异性探针池。 但植物染色体的显微切割体外扩增与微克隆技术由于染色体同步化和制片困难与动物相比进展缓慢,目前只有在甜菜中与抗线虫有关染色体及Schondelmaier在大麦IHS染色体、Albani在小麦染色体上作过报道.我国则尚未开展这方面的研究。  相似文献   

3.
一些研究人员曾预言:男性特有的Y染色体正呈现萎缩之势,上面的许多基因因为突变正在逐渐失去功能,Y染色体早晚可能消失,而男性也会随之灭绝。美国怀特海德研究所的科学家们认为,上述观点实在是"危言耸听",并于近日在英国《自然》杂志上发表了相关驳文。女性的性染色体为两条X,男性则具有一条X染色体和一条Y染色体。由于只有Y染色体是决定男性性别的染色体,因此它异常“脆弱”。  相似文献   

4.
在与人的肿瘤相关的许多染色,体异常中,最常见的是异常小的费城染色体(Ph~1).至少有90%的慢性粒细胞白血病(CML)患者的所有白血病细胞中有该染色体,该染色体由第9号和第22号染色体之间的易位产生.细胞原癌基因abl(c-abl),通过其与小鼠Abelson白血病病毒的癌基因(v-abl)的关系而被识别,c-abl 与CML 有关.从CML 细胞系中可克隆第9条和第22条染色体之间的融合区,并证明第22号染色体的一个区与接近abl 的5′末端的顺序连接.与  相似文献   

5.
小麦小染色体的发现及其特殊PMC减数分裂Ⅰ行为   总被引:1,自引:0,他引:1  
徐旗 《科学通报》1997,42(22):2433-2435
普通小麦(Triticum aestivum)有42条染色体,近年来在细胞质来源于无芒山羊草(Ae.mutica)、黑麦(Secale cereale)、偃麦草(Elytrigia elongata 2n=70和Agropyron glaucum 2n=42)的异质普通小麦中分别发现了小染色体(microchromosomes),在方穗小麦-黑麦(Triticum tauschi-Secale cereale)双二倍体(DDRR)中也发现了小染色体。这类小染色体均较亲本染色体小,具端着丝粒,载有促进结实基因或雄性不育恢复基因,现正在对其进行深入的遗传学研究。本文简要报道在普通小麦自花结实4D缺体中发现的一种小麦小染色体及其特殊减数分裂行为。  相似文献   

6.
李晓琳  徐霁  俞冠翘  罗利 《科学通报》2012,(31):2948-2955
小肽分子是植物细胞分化、器官形成和生物防御的重要信号分子.通过分析大豆全基因组DNA序列,发现大量的基因编码小肽前体即小多肽分子.到目前为止,对这些小多肽分子的特征以及功能知之甚少.本文系统地分析了公共数据库中的大豆转录组数据,鉴定了212个在根瘤中增强表达的小多肽基因.其中79个基因属于38个多基因家族,而另外133个基因不属于任何基因家族.在38个基因家族中,有10个基因家族只出现在豆科植物中,另外28个也出现在模式植物拟南芥中.在大豆中,最大的一个基因家族是伤流诱导的小多肽(wound-induced small protein,WIP)基因家族,由38个成员组成,其中一半左右的基因在大豆固氮根瘤中增强表达.我们进一步分析了蒺藜苜蓿、百脉根、拟南芥和水稻中的WIP同源基因,发现部分基因也在根瘤中增强表达或者受病原菌诱导表达.二级结构分析显示,WIP小多肽前体均含有一个DUF3774结构域,其中包含2个跨膜疏水区域,多数分子具有N-端信号肽序列.我们选取了2个大豆WIP基因进行亚细胞定位分析,发现WIP小多肽定位于细胞膜上.有趣的是,34个大豆WIP基因成簇分布在3条染色体上,与目前发现的其他小多肽基因家族的分散分布(如CLE)完全不同.在6,12和13号染色体上分别分布有11,12和11个WIP基因.而在12号染色体上的WIP同源基因则位于13号染色体上,二者呈对应关系.而6号染色体上的WIP基因相互之间同源性最高,且只与12号染色体上的基因具有较高的同源性.因此,可以推测,在大豆基因组中WIP基因可能起源13号染色体,通过染色体复制扩散至12号染色体,再扩散到6号染色体.而在拟南芥和水稻基因组中,半数以上的WIP基因也分布在一条染色体上,且与大豆12和13号染色体上的WIP基因具有较高的同源性.因此,植物中WIP基因可能来源一个共同的祖先.  相似文献   

7.
人类细胞遗传学——密切联系医学的一个分支,近年来有很大的进展。它同生化相结合,开辟了预防和治疗的途径;同细胞学相结合,提供了简易的诊断方法。它的研究成果,不论在遗传学理论上,还是在临床医学上,都有重要的意义。1956年齐亚(J.H.Tjio)和列文(A.Levan)发表了“人的染色体数目”的论文,确定了人的体细胞中染色体数目不是48条,而是2n=46条,这篇论文标志着现代人类细胞遗传学的开始并间接影响着生物学研究的  相似文献   

8.
细胞工程与水产动物育种   总被引:1,自引:0,他引:1  
细胞工程(Cellengineering)是当今生命科学最前沿的生物技术(Biotechnology)的一个组成部分。细胞工程就是在细胞水平进行遗传操作与加工,定向地改变或创造新的物种,或创造具有新遗传特征的细胞的技术。就学科来说,它是涉及细胞生物学、发育生物学和遗传学的综合科学;就技术的应用范围来说,主要包括染色体组工程、核质杂交(核移植)技术和细胞融合技术等。水产动物育种的生物技术中,鱼类细胞工程技术研究起步较早,且发展迅速。在此带动下,近十几年中,以提高增养殖产量和质量为主要目的的贝类、虾蟹类遗传育种工作已成为热点…  相似文献   

9.
甘建国 《科学通报》1995,40(22):2107-2107
微型机械的研究以其潜在的广泛应用前景正在世界各国迅速展开.目前国内外有关研究大多集中在单元技术如微型驱动器的研制、微机械加工工艺研究等.随着这些单元技术的发展,有关微机械系统组成的研究就摆在了人们的面前,而最终要研制和开发出具有实用价值的微机械系统,首先就必须对这一问题进行深入、系统的研究.微型机器人是可编程通用微型机械或微动机械,作为一个完整的微机械系统,它基本上包含了现今有关微机械研究的各个领域,因此,通过分析微型机器人的特点,我们可以弄清微型  相似文献   

10.
<正>世界上最小的航天器有多小?长3.5cm,宽3.5cm,重量仅为4g。这个世界上最小的航天器名为"精灵"(Sprites),虽然只有邮票大,但它包含了太阳能板、微型控制系统、陀螺仪、磁力计、天线等,运转功率为100毫瓦,是目前世界上最小的全功能空间探测器。2017年6月23日发射升空的"精灵",已于7月底进入近地轨道。"精灵"是著名地外生命探索组织"突破计划"的一个项目成果。本  相似文献   

11.
明月 《科学之友》2004,(4):27-27
一个硅片微型机器人不久前在美国洛杉矶一家试验室里实现了爬行突破,其所依靠的动力是活体心脏肌肉组织的脉搏动力。这个机器人体积非常小,宽度只有人类一根头发丝的一半。这是世界上第一次利用肌肉组织驱动机器人前行。美国国家航空和宇宙航行局对此次研究提供资金支持。该局希望未来有一天,这些靠肌肉力量驱动的微型机器人能在太空中帮助人类维护太空船,弥补太空船体上由于微小陨石撞击而产生的小漏洞。不管这种微型机器人最终将被应用在什么领域,负责此次研究的工程师卡洛斯·蒙特马哥诺(CarlosMontemagno)和他的研究小组成员对于它能实…  相似文献   

12.
吕有勇 《科学通报》1994,39(23):2181-2181
染色体缺失或染色体结构异常是人类肿瘤细胞的重要生物学特征之一.目前的研究结果提示,在这些丢失的染色体或染色体片段中可能含有调节控制细胞生长、分化的重要基因,即肿瘤抑制基因.已有研究工作证明,当某一肿瘤细胞有特异性染色体缺失或异常时,导入一条新的染色体可以逆转某些肿瘤细胞的恶性表型,如将人正常11号染色体导入宫颈  相似文献   

13.
凌育宸 《科学通报》1959,4(3):89-89
有机硅的高分子化合物具有許多优越的性能和广泛的用途,而且研究得很多,同时已在工业上生产。但錫和硅同屬于周期表中碳的一族,有許多相似的地方,虽然对錫的有机化合物已有了一些研究,而它作为高分子化合物的研究則极少。作者推想錫的化合物也可能具有某些特殊性能。Langkammerer曾指出錫的烯类化合物可以單独聚合,或和其他单体共聚合,而且有一定的用途。因此,作者合成了甲基丙烯酸或丙烯酸三烃基錫酯类型的化合物,并进行了初步的試驗。  相似文献   

14.
秦克诚 《科学》2002,54(1):47-48
遗传工程是人类20世纪重要的技术成就之一,本文以邮票为媒介追溯人类在此领域的进展. 遗传工程有广义和狭义之分.广义的遗传工程包括细胞水平上的遗传操作(细胞工程)和分子水平上的遗传操作(基因工程),狭义的遗传工程就是基因工程(又称重组DNA技术).  相似文献   

15.
苯作为有机溶剂和化工原料,用途广泛。但苯又是一种工业毒物,会严重抑制骨髓功能,引起染色体损伤,可能会导致白血病。我们用微核测定和染色体畸变分析的方法研究了苯与染色体损伤之间的关系,  相似文献   

16.
水稻花药发育相关基因OsPRP1的克隆和特性分析   总被引:1,自引:0,他引:1  
利用减法杂交和RACEs从水稻颖花中克隆了一个编码富含脯氨酸残基多肽的cDNA, 并将其相应的基因命名为OsPRP1. OsPRP1由2个外显子和1内含子组成, 编码的蛋白由224个氨基酸残基组成, 其中脯氨酸含量最高, 占14.29%. 该蛋白由一个21个氨基酸残基组成的信号肽, 一个N-端结构域和一个C-端结构域组成. C-端含有2个18个氨基酸长的、嵌合PEPK基元(motif)的富含脯氨酸的重复序列. Southern blot及序列分析结果表明, 水稻基因组中存在4个拷贝的OsPRP1, 它们定位在第10染色体的20 kb的DNA片段上. RT-PCR表明, OsPRP1在幼芽和颖花中表达量较高, 在根和叶中有少量表达. 用花和幼芽进行原位杂交分析证明在花中, OsPRP1在花粉母细胞、绒毡层细胞和花器官的维管束细胞中表达; 该基因的表达有明显的时间特异性, 在花粉母细胞中表达量最高, 在单核期的小孢子中几乎不表达; 在芽中, 该基因在胚芽鞘和叶原基的表皮细胞中表达. 从该基因编码蛋白的特点可以看出它极可能是一种细胞壁蛋白.  相似文献   

17.
冰草属(Agropyron Gaertn.)的P组染色体被推测可能携带有抑制小麦Ph基因的遗传系统, 但是相关的研究很少. 本研究发现, 在小麦-冰草附加系Ⅱ-21-2(附加1•4重组P染色体)的减数分裂中存在染色体联会异常的现象. 对该附加系进行细胞遗传学和Ph1基因扩增等分析与检测, 结果表明附加系Ⅱ-21-2的Ph1基因扩增正常, 未见缺失; 小麦-冰草附加系Ⅱ-21-2减数分裂中期每个花粉母细胞出现六价体或四价体的数目分别为0.41和0.13, 而附加系受体小麦Fukuho减数分裂无染色体异常联会. 双色GISH/FISH检测表明, 附加系Ⅱ-21-2的P染色体不直接参与多价体的组成, 多价体为小麦自身染色体构成. 附加系Ⅱ-21-2的1•4重组P染色体能够抑制小麦Ph基因的作用, 从而引起小麦部分同源染色体之间的联会, 并造成包括小麦3B-3D等部分同源染色体之间的易位. 小麦-冰草附加系的P染色体促进小麦部分同源染色体联会的作用或特性在未来小麦的遗传改良中具有潜在应用价值.  相似文献   

18.
高沛永 《科学通报》1986,31(6):469-469
绝大多数环状染色体畸变是单着丝粒环(r),迄今人们在理化因子诱发畸变的研究中,一直认为它是不稳定的,常常将其和双着丝粒(dic)归为一类。作者先前在用FPG技术对受~(60)Co-γ线不同剂量照射的离体人血细胞遗传学效应研究中,曾观察到第二次分裂细胞r的发生率高于第一次分裂细胞,并提出了r可能是稳定性的假设。新近,Scheid也观察到了这一  相似文献   

19.
人参胚胎学研究   总被引:2,自引:0,他引:2  
李方元 《科学通报》1989,34(9):719-719
本文观察了人参(Panax ginseng,C.A.Mey.)大小孢子发生、雌雄配子体形成、双受精过程、胚和胚乳的发育、种子形成。在幼小花药横切面上观察到的孢原细胞,经平周分裂形成初生造孢细胞及次生造孢细胞,并发育为小孢子母细胞。减数分裂过程胞质  相似文献   

20.
备受瞩目的人类基因组计划,是一项全世界科学家合作进行的宏伟的科学研究计划,其目标是破译人类细胞中的全都遗传密码。现在,这项跨世纪工程到达了它的第一个里程碑:第22号人类染色体被全部破译!这是迄今为止被完全破译的第一条人类染色体,英国剑桥大学桑格中心的伊安·敦汉姆及其同事在1999年12月2日出版的《自然》杂志上发表了该染色体的完整基因序列,《自然》杂志还以封面放事形式予以介绍。染色体是由DNA团块组成的,存在于每个细胞的细胞核中。第22号染色体是23对、杨条人类染色体中仅次于第2条染色体的最小的染色体,其DNA…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号