首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
贾友礼  顾宏周 《科学通报》2019,64(10):1008-1017
DNA折纸术(DNA origami)是DNA纳米自组装的一种主流方法,通常1条DNA主链在成百上千条合成的DNA短链辅助下,通过碱基互补配对原则折叠并锁定生成所设计的纳米结构.单链DNA折纸术(single-stranded DNA origami,ssDNA origami)是传统DNA折纸术的一种进化和衍生,它摒除了传统折纸术对众多短序列的需求,通过高度集成序列信息至1条长单链DNA中,实现了由1条DNA序列自组装成复杂可控的纳米结构.由于体系中不存在过量的短DNA链杂质,并且同样可以顺利移植成单链RNA折纸术,单链DNA折纸术较传统DNA折纸术可能具备更好的生物和材料应用前景.本文概括了长单链DNA自组装的研究进展,总结了几种常用的长单链DNA制备的方法,并展望了该技术的应用前景.  相似文献   

2.
郭春沅 《世界科学》2004,(2):39-40,33
DNA分子之所以能够形成双螺旋结构,是由于它含有四种不同的碱基——腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C),通过碱基A与T、G与C之间的氢键结合才得以相互配对形成双链。正是由于DNA分子中包含有数目巨大的四种碱基,使得人们看到了DNA分子的巨大编码潜力。  相似文献   

3.
对一块已有45亿年历史的澳大利亚陨石的新研究表明,地球生命的一些原材料很可能起源于太空。科学家在这块陨石中发现了有机分子鸟嘌呤和黄嘌呤,同时证实了它们不可能是在地球上形成的。这两种分子都属于碱基,而碱基是DNA的前身,DNA则是地球上生物体的基因指令。鸟嘌呤和黄嘌呤还可能是RNA的基石,RNA则为生物体制造蛋白质。  相似文献   

4.
DNA自组装的过程,不仅需要合适的缓冲液,还需要适当的退火时间.本文利用DNA自组装技术,以反向平行双交叉(double-crossover,DX)DNA分子瓦(DNAtile)作为建筑模块,带有互补黏性末端(sticky-ends)的分子瓦依据Watson-Crick碱基互补配对原则配对连接,成功制备出二维晶体结构.比较不同退火时间下形成的DNA分子瓦结构,采用非变性聚丙烯酰胺凝胶电泳(non-denaturing PAGE)表征.结果表明,退火时间为2.5h时形成的分子瓦的结构较稳定.等量混合此条件下形成的不同分子瓦,分别从50,37和25℃退火至室温,利用原子力显微镜(AFM)对退火后的结构进行表征,结果表明,起始退火温度为37℃时得到的DNA二维晶体较平整.  相似文献   

5.
胡红雨 《科学通报》1994,39(18):1720-1720
天花粉蛋白(Trichosanthin,TCS)是分子量为28000的单链蛋白,一级结构共247个氨基酸残基,空间结构含大、小两个结构域,位于大小两结构域交界处的分子凹槽可能是底物瞟吟碱基的结合位点.刘望夷等发现TCS类似蓖麻毒蛋白(Ricin),也是RNA糖苷酶型的核糖体失活蛋白(Ribosome inactivating protein,RIP).其作用机制是RNA N-糖苷酶型,催化C-N糖苷键的裂解,释放一个腺嘌吟碱基.在本项研究中以单核苷酸5’-AMP等作为TCS的类似底物,用~1H NMR法研究TCS对这些类似底物的作用,发现TCS具有较弱的糖苷酶活性.  相似文献   

6.
葛志磊  樊春海  YAN Hao 《科学通报》2014,59(2):146-157
DNA纳米技术是一种自下而上的分子自组装模式,由分子构造为起点基于核酸分子的物理和化学性质自发地形成稳定结构,遵循严格的核酸碱基配对原则,使得DNA被用作构建结构的材料基元而不是在活细胞中那样作为遗传信息的载体.通过合理地设计碱基链来达成精密控制的纳米级复杂结构的目的,研究人员在这个领域已经建立起诸多二维、三维的复杂纳米结构以及各种具有不同功能的分子机器,比如DNA计算机.本文总结了近年来DNA纳米自组装方面取得的最新进展,同时介绍DNA纳米自组装的几种不同组装方法,并对其相关应用进行了展望.  相似文献   

7.
16S rRNA基因序列变异与中国鮡科鱼类系统发育   总被引:11,自引:2,他引:11  
郭宪光  张耀光  何舜平  陈宜瑜 《科学通报》2004,49(14):1371-1379
采用PCR技术获得了中国鮡科鱼类10属9种鰋鮡鱼类和6种非鰋鮡鱼类线粒体DNA 16S rRNA基因部分序列. 序列分析表明, 16S rRNA序列非配对区有A碱基偏倚性, 配对区有G碱基偏倚性. 在非配对区, 主要由于A→G转换引起转换大于颠换的偏倚, 且平均替代率几乎是配对区的2倍. 配对区和非配对区均没有替代饱和现象. 采用最大似然法(ML)和Bayesian方法构建分子系统树, 结果表明, 鮡科是一个单系群, 由(黑鮡属(魾属, 纹胸鮡属))与(褶鮡属+ 鰋鮡鱼类)两支构成. 鰋鮡鱼类可能不是一个单系群, 分子数据不支持褶鮡属与鰋鮡鱼类构成姐妹群关系. 褶鮡属与凿齿鮡属可能构成姐妹群关系. 鮡属不是一个单系, 与石爬鮡属和拟鰋属构成单系群. 前臀鮡可能是中华鮡的同物异名, 石爬鮡属可能只有一个有效种, 即青石爬鮡.  相似文献   

8.
陆承勋 《科学通报》1989,34(4):267-267
众所周知,DNA是由两个长链DNA分子彼此依靠两对专一性的碱基,如腺嘌呤(A)-胸腺嘧啶(T),胞嘧啶(C)-鸟嘌呤(G)间的氢键作用而形成的一个双螺旋结构分子。因此近来在核酸类似物的研究中,人们对含有一对核酸碱基A与T作为悬挂基的核酸类似物的研究给予很大重视。其理由是在大分子链上含有一对A与T作为悬挂基的模型化合物,在其结构与性能上比只有一个A或T的模型更为接近天然的DNA。但由于合成上的困难,对这  相似文献   

9.
张成  杨静  许进  赵东明 《科学通报》2009,54(24):3913-3919
提出了一种基于环形DNA缩短法的新型计算模型. 该模型可以求解n个顶点m条边的图的最大独立集. 算法的时间复杂度是O(n+m). 随着问题规模的增大, 计算所需的试管数量呈线性增长. 在计算模型的生物操作中, 有两个主要技术: DNA分子内环化和DNA长度逐步缩短. 结合反向PCR(聚合酶链式反应), 磁珠吸附和环化酶催化等多种方法, 在求解步骤中, DNA分子的结构在线性双链DNA(dsDNA)、线性单链DNA(ssDNA)和环形单链DNA之间进行循环变化. 利用环形DNA分子的结构特点, 在计算过程中避免了DNA分子间重组. 为了证实该DNA计算模型的可行性, 利用其求解了一个最大独立集问题的实例.  相似文献   

10.
颜彬  蒋逸群  曹亚  陶永光 《科学通报》2012,(36):3467-3474
长链非编码RNAs(lncRNAs)为一类碱基长度大于200nt的非编码RNA分子,作为一类新型基因表达调控因子,可通过改变染色质结构和直接调节转录因子活性参与转录调控,亦可通过调节mRNA形成的过程及其翻译参与转录后调控.lncRNAs表达水平异常与肿瘤发生发展密切相关,有的可以促进癌变,在肿瘤中高度表达;有的可以抑制癌变,在肿瘤中表达降低.本文总结了近年来lncRNAs研究方面取得的最新进展,主要介绍了lncRNAs的作用机制及其异常表达与肿瘤发生发展的关系,这为我们理解lncRNAs的功能及其与恶性肿瘤的关系提供了一个新的思路.  相似文献   

11.
miRNA(microRNAs)是一类由内源基因编码的长度为18~23个碱基的非编码单链RNA分子,它们在转录后水平调节基因的表达。据报道,在多种癌症中发现了miRNA表达量改变,提示其可能与癌症的发病机理、肿瘤生长和转移等相关,起到癌基因或抑癌基因的作用。大量证据表明,miRNA的异常表达会促进肿瘤的发生和发展,因此在包括非小细胞肺癌、乳腺癌和前列腺癌等多种癌症中具有临床价值。笔者主要阐述miRNA的生成过程,以及目前已知的相关miRNA在肺癌、乳腺癌、前列腺癌的预测、诊断、治疗和预后中的临床应用及相关分子机制。  相似文献   

12.
黄瓜花叶病毒卫星RNA-1的cDNA合成、克隆及序列分析   总被引:2,自引:1,他引:1  
张春霞 《科学通报》1989,34(7):540-540
1976年Kaper等发现黄瓜花叶病毒(CMV)的某些株系中伴随有小分子的卫星RNA,它依赖而又抑制CMV的复制,可以说是CMV的分子寄生物。它的存在还影响病毒引起的症状,有的可以加重,但大多数情况下明显减轻症状。因此研究卫星RNA的结构和功能在理论上有助于搞清它对其相应的辅助病毒依赖和抑制的本质,我们已大面积应用卫星RNA防  相似文献   

13.
<正>DNA分子是生物体存储和传递遗传信息的载体,具有进化产生的高效性和稳定性. DNA分子互补配对的可预测性和可编程性使其成为极具潜力的纳米构筑材料.特别地,近年来DNA纳米技术的发展为纳米科学和纳米技术带来了新的生长点,为构筑新型纳米组装体、超分子结构和分子机器提供了前所未有的强有力工具.早期DNA纳米技术集中于DNA结构的设计和构建.从最初发展的利用交叉结模块自下而上的层次构筑方案,到基于一条长单链DNA折叠的DNA折纸术的  相似文献   

14.
根据Watson-Crick DNA碱基互补配对原则,设计了不同黏性末端DNA序列,以两种三点星状为模块(three-point-star motif),运用DNA自组装技术,成功制备了六边形网格状DNA二维阵列.研究不同单链DNA的摩尔比例对三点星状模块结构组装的影响,以及不同起始退火温度对二维阵列自组装的影响,用凝胶电泳及原子力显微镜(AFM)对结构进行了表征.结果表明,当构成三点星状模块的3条单链摩尔比例为1:3:3时得到的模块结构更稳定,从50℃开始退火时得到的二维阵列更完整.自组装得到的二维阵列厚度约2nm,六边形边长约20nm.本研究为进一步探究三点星模块组装二维阵列的机理提供了新的思路.  相似文献   

15.
范思思  程进  冀斌  高超  江凯  刘岩  宋杰 《科学通报》2019,64(10):1027-1036
脱氧核酶(DNA zyme)是通过体外筛选技术获得的有酶活性的单链DNA分子.随着越来越多的脱氧核酶被筛选出来,科学家对其功能性质的研究也逐渐深入.其中,RNA切割作用作为脱氧核酶最重要的一种特性,是目前研究热点.而脱氧核酶发挥RNA切割作用需要辅因子(金属离子、中性分子、细菌等),因此,基于此特性,DNAzyme不仅被广泛用于金属离子和生物分子检测,而且被应用于特异性切割mRNA阻断蛋白的翻译,从而用于多类临床疾病的治疗.本文系统总结了DNAzyme在金属离子和生物分子检测以及在基因治疗方面的研究进展,并对其在动物体内对目标分子的高灵敏度、低浓度特异性检测及发挥切割活性进而达到疾病治疗做出了展望.  相似文献   

16.
细胞是生命的基本单位。在任何生物的细胞核中,都含有一套由遗传物质去氧核糖核酸(DNA)组成的染色体。分子生物学家已经探明,染色体是由两条DNA长链缠绕而成的双螺旋结构。DNA含有四种类型的碱基,即腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)。每条DNA长链上的腺嘌呤和胞嘧啶配对互补,而鸟嘌呤则和胞嘧啶配对互补。互补的碱基间以氢键联结,成为两条DNA长链间的纽带。  相似文献   

17.
<正>地球生命的DNA包含4种碱基,现在,美国科学家通过调整普通碱基——鸟嘌呤、胞嘧啶、腺嘌呤和胸腺嘧啶(G、C、A、T,其中A与T配对、C与G配对)的分子结构,创建出两对新碱基:S和B、P和Z。随后,研究人员将合成碱基与天然碱基结合,得到了由8个碱基组成的DNA。实验表明,合成序列与天然DNA  相似文献   

18.
生物信息学与21世纪的生物学   总被引:1,自引:0,他引:1  
李衍达 《科学》2001,53(5):10-12
约35亿年以前,地球上开始出现生命.最先出现的是原核蓝藻类;以后,经过漫长的演化,出现动、植物,形成了多种多样、千姿百态的各种生物.虽然生物的种类多种多样,形状千差万别,但是现代分子生物学的研究表明,组成各种生物的最基本的分子却是完全相同的.简单说,核酸是遗传信息的携带者,蛋白质则是遗传信息转化为生物结构与功能的表达者.而决定遗传信息的核酸(DNA和RNA)是由含4种不同碱基,即腺嘌呤(Adenine,缩写为A)、鸟嘌呤(Guanine,G)、胞嘧啶(Cytosine,C)和胸腺嘧啶(Thymine,T;在RNA中则为尿嘧啶,Uracil,U)的四种核苷酸组成.当遗传信息翻译为蛋白质时,它们都遵循统一的遗传密码,即每三个核苷酸翻译成蛋白质中一个特定的氨基酸,通常称为三联体密码子.这些密码子编码20种氨基酸,而不同氨基酸组成的肽链就形成不同结构的蛋白质,产生多种多样的生物功能.核酸和蛋白质构成生命活动的物质基础,要了解生命现象,揭开生命的奥秘就必须深入了解核酸与蛋白质.  相似文献   

19.
像所有的多细胞生物一样,植物也有一个长距离运输系统,用以运载营养和信息分子到远处器官。但过去植物学家一直认为植物只是沿着一套贯穿整个植株的称为韧皮部的通道运送小的和简单的信号分子。他们认为大分子不能通过这狭窄的通道进入韧皮部。然而研究者们发现,一种运载蛋白显然可以运载大的RNA分子进入韧皮部,这提示我们RNA运输是植物“信息超级高速公路”的一个组成部分。图森的亚利桑那州立大学的分子遗传学家理查德·约根森(RichardJorgensen)说:“这项工作确定了植物细胞用以彼此交流的可能是一种新系统的必需的组成成分,…  相似文献   

20.
郭晓强  李岩异 《自然杂志》2022,44(6):480-490
核糖核酸(RNA)是一类具有重要生物学功能和临床价值的生物大分子,其基本组成元件是核糖、碱基和磷酸。早在1869年米歇尔就发现了RNA,但直到20世纪50年代科学家才开始对其进行系统研究。功能方面,RNA参与蛋白质合成、作为遗传物质、催化生物反应、调节基因表达等;应用方面,多种RNA药物已研发成功,包括反义RNA、小干扰RNA、适配体、RNA指导的基因编辑和mRNA疫苗等。文章回顾了RNA发现、发展和应用过程,以期能对RNA生物重要性有一个较为全面的理解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号