首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
赵凯  宣益民  李强 《科学通报》2010,55(1):94-102
基于TD2G9不可压格子Boltzmnann模型, 通过引入第3个分布函数表征浓度场的演化, 并在标准演化方程后附加源项, 构造了用于模拟多孔介质内在多物理场(浓度场, 温度场)下交叉耦合效应的自然对流传热传质格子Boltzmann模型. 基于非平衡态不可逆热力学的基本原理, 引入Boussinesq假设, 在考虑了耦合扩散效应的基础上建立了可用于描述多物理场耦合效应下的自然对流传热传质的控制方程. 采用提出的格子Boltzmann模型结合多孔介质构造算法从孔隙尺度对规则以及随机多孔介质内双扩散效应的自然对流传热传质过程进行了模拟, 研究了不同瑞利数Ra, 不同孔隙率下的多孔介质内传热传质特征, 考察了温度梯度等因素对多孔介质内传质过程的影响, 创新地从孔隙尺度对多孔介质内的耦合对流扩散过程的传热传质机理进行了研究.  相似文献   

2.
低浓度颗粒流Boltzmann方程的同伦分析方法解   总被引:2,自引:0,他引:2  
张丽  王光谦  傅旭东  孙其诚 《科学通报》2009,54(11):1518-1523
同伦分析方法(homotopy analysis method, HAM)是求解强非线性问题的有力手段. 针对颗粒流的动理学理论中的非线性微分积分方程——?Boltzmann方程, 采用 HAM方法选取局域Maxwell速度分布函数作为初始猜测解, 得到了低浓度颗粒流的Boltzmann方程的一阶近似解, 与传统的Chapman-Enskog方法得到的一阶近似解表达式的结构一致, 初步显示了HAM方法求解Boltzmann方程的有效性, 为一般Boltzmann方程的HAM方法求解奠定了基础.  相似文献   

3.
有限容积法与格子Boltzmann方法耦合模拟传热流动问题   总被引:3,自引:0,他引:3  
栾辉宝  徐辉  陈黎  陶文铨 《科学通报》2010,55(32):3128-3140
自然界和工程领域中的许多物理现象的发生通常涵盖几个数量级的几何空间及时间范围, 我们将其统称为多尺度物理现象. 在模拟多尺度问题时, 如果仅采用宏观方法, 则会存在一些不足, 如无法预知微小部分的细节以及引入复杂的经验关联式; 如果仅采用介观/微观方法, 则需要消耗大量的计算资源. 构造宏观-介观、宏观-微观、宏观-介观-微观等多种层次上方法的耦合体系, 可以在很大程度上克服这些不足. 构造了宏观有限容积法(FVM)与介观格子Boltzmann方法(LBM)的耦合模型(CFVLBM), 给出了由宏观物理量重构密度分布函数和温度分布函数的两个重构算子, 解决了LBM与宏观方法耦合的关键难题. 选取二维、三维典型传热流动问题对耦合模型进行了考核, 计算结果同基准解符合得很好. 最后将CFVLBM应用于计算多孔介质内的复杂流动问题. 研究表明, 基于文中重构算子的CFVLBM可以准确有效地应用于模拟传热流动问题.  相似文献   

4.
李庆  余悦  唐诗 《科学通报》2020,65(17):1677-1693
经过30余年的发展,格子Boltzmann方法已成为一种非常有效的数值模拟方法.该方法是介于微观分子动力学模拟方法和基于连续介质假设的宏观数值模拟方法之间的一种介观数值模拟方法.与传统数值模拟方法不同,格子Boltzmann方法基于气体动理论,具有清晰的物理背景和粒子图像,能够非常方便地从底层刻画流体内部的相互作用,因而对多相多组分等复杂流体系统的模拟具有很大优势.近年来,该方法被应用到沸腾及冷凝相变传热的研究中,体现出了一定的优势与特色.与VOF, Level Set等界面跟踪或界面捕捉方法相比,格子Boltzmann方法中的气液界面可以自动产生、演化与迁移,无须采用任何界面跟踪或界面捕捉技术.此外,在相变传热的研究中,气泡或液滴可以自动成核,无须布置种子气泡或种子液滴.本文总结了近些年多相格子Boltzmann方法的发展,并结合作者的研究工作,重点评述了伪势多相格子Boltzmann模型的研究进展及其在沸腾与冷凝相变传热中的应用.  相似文献   

5.
发展了一个包含积灰形状演化、颗粒沉积和脱离机理的数值模型和计算方法,模拟了单排管表面的积灰过程.首先建立了流动的格子Boltzmann方法-有限容积方法(LBM-FVM)耦合的计算模型,给出了通过宏观参数构建多松弛LBM分布函数的重构算子;并结合元胞自动机模型、能量平衡模型以及力和力矩分析,模拟了颗粒的运动、沉积和碰撞过程;其次,针对模拟的时间步长相对于实际积灰时间较短的困难,提出了用于将模拟时间换算到实际时间的比例;然后,具体模拟和分析了不同直径颗粒在不同入口速度下的积灰过程.结果显示,积灰面积随时间呈指数增长并趋近于一个平衡值;在颗粒质量分数一定时,存在一个积灰速率较高的速度范围;颗粒脱离在迎风面和管子正后方较为严重,但在背风面侧面相对缓和;积灰层在整个背风面生长,在迎风面形成锥形,改变了流动并阻止了颗粒的进一步沉积.  相似文献   

6.
格子Boltzmann方法(lattice Boltzmann method,LBM)是一种新型的流体力学模拟工具.基于介观动力学理论,LBM具有物理意义清晰、程序易于实施、边界易于处理和并行性能好等优势,因而在许多传统方法难以胜任的复杂流动领域得到了广泛应用.本文首先综述了LBM的诞生、发展以及现况,并阐述了LBM的理论和基本模型;随后,介绍了LBM在高强度聚焦超声(high-intensity focused ultrasound,HIFU)领域中的相关应用.基于LBM基本模型,构建了一种轴对称多弛豫时间(axisymmetric multiple-relaxation-time,AMRT)模型,并在模型中采用了具有二阶精度的Bouzidi-Firdaouss-Lallemand(BFL)边界处理格式.利用AMRT模拟了常见球面聚焦换能器产生的行波聚焦声场,并与传统声学方法进行了对比,验证了AMRT模型的有效性;随后又模拟了一种新型的球腔聚焦换能器产生的驻波聚焦声场,探讨了该类型换能器在HIFU治疗中的应用价值.本文结果旨在推动LBM成为一种全新的有效的声学仿真手段.  相似文献   

7.
吕浩宇  李椿萱 《科学通报》2010,55(12):1182-1188
利用磁流体五波模型对低磁雷诺数下磁流体压缩管道中考虑Hall效应的流动进行数值模拟. 该模型由带有电磁作用强制项的Navier-Stokes方程组和考虑了Hall效应及离子潜行效应的电势Poisson方程组成, 数值格式分别采用严格保证熵条件的熵条件格式及中心差分格式. 数值模拟结果说明在压缩管道中心流动区域电流线发生扭曲, 并出现涡电流; 而Hall效应延缓了涡电流的产生, 同时该效应可引起流场、电场以及Joule热的不对称分布. 最后计算了磁流体压缩管道的性能参数, 通过与直方管道的比较, 说明Hall效应将导致磁流体发生器的性能下降, 而且直方管道的性能优于压缩管道.  相似文献   

8.
裂缝性介质通常具有多尺度特征,离散裂缝模型虽具有计算精度高、拟真性好的优点,但传统数值方法在解决此类多尺度流动问题时,难以突破计算量大的瓶颈,不利于实际应用.对此,本文将离散裂缝模型和多尺度混合有限元相结合,仅需进行宏观大尺度计算,通过多尺度基函数来刻画小尺度裂缝精细流动特征,在保证计算精度的同时降低了计算量.在小尺度上,采用模拟有限差分法构建离散裂缝模型的多尺度基函数,该方法不仅具有良好的局部守恒性,而且适用于任何复杂离散裂缝网格.文章详细阐述了离散裂缝模型多尺度混合有限元两相流动数值计算格式的建立,重点介绍了如何使用模拟有限差分法构建离散裂缝模型的多尺度基函数,并采用超样本技术进一步提高计算准确性.数值结果表明,本文计算方法不仅能够准确捕捉离散裂缝性介质中的精细流动特征,而且具有很高的计算效率.  相似文献   

9.
利用基于格子玻尔兹曼方法的离散颗粒模型对单孔射流鼓泡床进行了研究. 此算法基于四向耦合的离散颗粒模型, 流体的控制方程采用考虑了孔隙率和流固相的滑移速度对流体流动影响的修正格子玻尔兹曼方法来求解, 颗粒间相互作用通过时驱硬球模型求解, 流固耦合采用EMMS曳力模型. 首先研究了不同颗粒对形成气泡大小的影响, 结果表明, 在相同的射流气速下, 粒径越大形成的气泡越小. 在粒径相同的情况下, 提高气体的入射速度, 则形成的气泡越大. 同时考察了气泡的分离时间与粒径以及射流气速的关系, 结果表明, 随着粒径以及射流气速在一定范围内的改变, 气泡的分离时间并没有明显改变. 另外颗粒床层扩展影响气泡形状, 颗粒床层变宽后, 气泡的形状接近于圆形; 颗粒床层高度增加时, 气泡明显变小. 最后考察了气泡诱导现象, 模拟发现当区域有空腔时, 气泡会被诱导到空腔的方向.  相似文献   

10.
2DMD应用于微通道内气体流动研究   总被引:1,自引:0,他引:1  
曹炳阳  陈民  过增元 《科学通报》2004,49(10):930-933
为了将2DMD(二维分子动力学)方法应用于微通道内气体流动的研究, 以平衡状态气体分子速度的分布函数为基础, 得到了分子平均速率、平均碰撞频率、平均自由程和动力黏度的理论形式, 以及二维体系气体流动的滑移边界条件. 在此基础上, 应用2DMD方法模拟了气体在亚微米通道内的滑移流动, 并与3D模拟的计算结果和计算量进行了对比分析.  相似文献   

11.
黄伟峰  李勇  刘秋生 《科学通报》2007,52(11):1232-1236
均匀静电场中液滴变形问题是电流体动力学的重要基础内容, 用格子Boltzmann方法研究此问题是一个崭新的领域. 基于Peng等人提出的可以得到高液气密度比和低液相压缩性的单组分两相格子Boltzmann模型, 采用本文提出的液相和气相统一的介电常数与密度的关系式, 对均匀静电场中二维绝缘液滴在绝缘媒质中的变形问题进行了数值模拟. 结果表明, 本研究采用的方法可以很好地模拟出液滴形态变化及其规律, 特别是液滴的失稳射流现象, 并得到电场中绝缘液滴变形问题的重要特征参数——临界介电常数比和临界电场强度. 这些结果与相关的理论和实验符合较好, 表明格子Boltzmann方法在研究存在多相的电流体动力学问题上具有独特优势和很大潜力.  相似文献   

12.
程雪玲  胡非  曾庆存 《科学通报》2012,(10):846-853
东亚北方冬春季常会出现寒潮冷锋天气,冷锋过后有明显的下沉气流,且伴随强阵风.观测数据分析表明,阵风结构具有相干性,是春季沙尘暴能够被输送到边界层上部,从而远距离传输的重要条件.格子玻尔兹曼方法(lattice Boltzmann method,LBM)是一种基于Boltzmann分子输运方程的数值流体计算技术,自从出现以来,由于其在微观水平描述运动的特点,一直被用来研究湍流等复杂运动,本文在格子玻尔兹曼方法中引入大涡模式,使其能够应用到大气边界层湍流场,模拟阵风的产生及发展,得到了具有波动和涡旋相结合的相干结构,从而解释了阵风相干结构起沙扬尘的机理.  相似文献   

13.
曾建邦  李隆键  廖全  黄彦平  王锋 《科学通报》2010,55(24):2371-2377
利用宏观热力学理论分别导出van der Waals, Redlich Kwong和Redlich Kwong Soave状态方程的介观粒子相互作用势, 发现均与Lennard-Jones势十分相似. 为考察介观尺度下界面特性, 将自由能泛函引入到单组分多相格子Boltzmann模型中, 通过对不同状态方程控制的饱和密度曲线以及界面密度梯度的模拟, 准确地再现了平衡态热力学特性. 通过对单组分相变过程的模拟, 结果显示该过程是气泡的长大过程, 且在特定温度下, 相分布图最终趋于平衡; 得到了体积自由能、界面能量系数等考察界面特性的非平衡态热力学特性参数, 这些参数均遵循不可逆热力学理论.  相似文献   

14.
耦合分形理论、裂隙流控制方程及孔隙尺度下数值模拟技术,详细分析了煤储层单割理中端面几何对流体运移的控制作用.首先,依据流阻成因及作用方式,确立了割理端面几何对流体运移的多重效应模式及其所对应的物理参数,依次为水文弯曲度、局部粗糙度因子以及端面曲折率.在此基础上,利用割理端面几何的自仿射属性,构建了观测尺度为割理开度时的分形裂-渗方程.其中,水文弯曲度和端面曲折率表现出不同的尺度不变特征,而局部粗糙度因子则具有长程平稳的特点.最后,利用格子Boltzmann方法于孔隙尺度下模拟了粗糙割理中煤层气的运移规律,结果表明:参数物理意义明确的新裂-渗方程解析值同数值模拟渗透率之间是高度一致的;在粗糙割理中,流速剖面的分布是一种正态分布而非抛物线模型;端面几何除了摩擦作用外还会引起涡流效应,并且同其局部特征直接相关,这会加剧压力的损失.  相似文献   

15.
韩省思  叶桃红  朱旻明  陈义良 《科学通报》2008,53(22):2722-2729
针对高速可压缩湍流流动, 在已有的压力膨胀项和可压缩耗散率的可压缩性修正湍流模型基础上, 引入激波不稳定效应修正, 发展了一个新的可压缩性修正k-ε湍流模型. 新模型采用抑制湍流动能和耗散率方程中湍流动能产生项的方法模化激波不稳定性效应, 压力膨胀项和可压缩耗散率的可压缩性修正采用广泛使用的Sarkar修正模型. 新模型物理意义明确, 形式简单, 可适用于超声速复杂湍流流动. 对自由流动中超声速混合层和复杂的超声速横侧射流干扰流场的多个工况进行计算分析以及与实验结果的比较, 表明本文发展的k-ε模型能抑制过大的湍流动能增长, 预测结果显著优于标准k-ε模型. 对超声速混合层流动, 新模型准确预测到了混合层增长速率随对流马赫数增加而减小的趋势, 与实验结果符合地较好. 对复杂横侧射流干扰流场中的分离流动, 激波不稳定性修正抑制激波区域过大的湍流动能增长, 计算出较宽的激波区域, 从而显著改善了对强分离流动的预测结果. 流体分离越强, 修正模型效果越明显, 即使在强分离情况下, 新模型的预测结果也与实验结果较好吻合.  相似文献   

16.
一个新颖的中空纤维人工肾传质理论模型   总被引:3,自引:0,他引:3  
介绍了一个新颖的中空纤维人工肾传质理论模型. 在模型中, 人工肾看成是一个由两个不相连通的多孔流动区域组成的多孔介质区域. 首先, 将透析液流动区域看成是一个多孔介质区域; 然后固定透析液流动区域和纤维膜所占区域, 人工肾中剩下的区域(也就是血液流动区域)也看成是一个多孔介质区域; 最后, 这两个多孔流动区域的交界面是纤维膜, 通过纤维膜进行质量交换. 透析液流动和血液流动均用带Darcy动量源项的Navier-Stokes方程描述, Kedem-Katchalsky方程作为其他的源项加进Navier-Stokes方程模拟通过纤维膜的渗透流. 计算过程中所有方程耦合求解, 模型被文献中的实验数据验证. 模拟结果显示, 模型预测的人工肾清除率与文献中的实验数据吻合, 并且优于其他模型对清除率的预测.  相似文献   

17.
页岩压裂中压裂液返排率低的孔隙尺度模拟与解释   总被引:1,自引:0,他引:1  
针对页岩压裂过程中,压裂液返排效率普遍很低的现象,基于高分辨率页岩岩样SEM(scanning electron microscope)电子显微镜扫描图像,利用马尔科夫链蒙特卡罗(Markov Chain Monte Carlo)方法重构得到页岩的三维数字岩心,采用具有高密度比的格子Boltzmann模型,从孔隙尺度来模拟页岩中气水两相驱替过程.首先通过计算表面张力和相对渗透率来验证模型的准确性,然后模拟页岩数字岩心中的油水两相流动,页岩中首先饱和水(气)相,然后从一端注入气(水)相,模拟终止条件为驱替相在出口端发生突破,气水运动黏度比和密度比分别设置为10:1和1:1000.水驱气过程中发生突破时,水相的饱和度为70%,而气驱水过程中发生突破时,气相的饱和度只有4.5%,给出了三维数字岩心中驱替相分布,在气驱水的过程中发生突破时,大部分水被滞留在页岩孔隙中,从而解释了页岩水力压裂中,压裂液返排效率低于10%的现象.  相似文献   

18.
基于SC模型提出了一种新的描述气液相变过程的格子Boltzmann模型. 通过对单组分相变过程的模拟, 验证了该模型的正确性. 通过对vdW流体的模拟以及与Maxwell构建原理的对比, 发现相对于SC和Zhang模型, 新模型能够得到与理论解相近的结果, 计算产生的最大伪速度介于SC和Zhang模型之间, 但扩大了温度的变化范围, 提高了模型的最大分离密度比, 使得新模型计算更加稳定, 适用范围更加广泛. 根据工程热力学中的对比态原理, 以工程中常用氨和水两种工质为例, 利用新模型分别模拟不同状态方程控制下的相变过程, 并与实验值进行了比较, 结果表明P-R状态方程更加适合描述氨和水等物质的相变过程, 特别地, P-R状态方程模拟结果与氨的实验值更加接近, 结果具有重要工程意义.  相似文献   

19.
采用格子玻尔兹曼方法(lattice Boltzmann method),研究了过渡流搅拌槽内颗粒悬浮过程的流体力学特征.模拟中搅拌槽为平底方槽,搅拌桨采用下压式45°四斜叶桨,搅拌雷诺数Re=1334,属于过渡流;颗粒体积分率最高达到8%.本模拟解析了包括颗粒周围和颗粒间流动的搅拌槽内整个流场,从而实现了在颗粒尺度上对颗粒-流体相互作用的研究.同时,本文也研究了体积分率、相位角对液相平均速度、液相湍流动能等流体力学特征值的影响规律.结果表明,随着搅拌槽内颗粒体积固含率的增加,液相平均速度和液相湍流动能均衰减.  相似文献   

20.
王海东  过增元 《科学通报》2010,55(21):2156-2162
热子气可以认为是热传导的主要载体, 是热量传递的载体. 类似于介电体中晶格振动能量量子化定义的声子, 大量的声子组成了声子气. 在气体和金属中则可以根据无规则运动的分子和电子所具有的能量定义热子, 大量无规则运动的热子就组成了热子气. 热子和声子、光子一样都没有静止质量, 但是热子的动质量可以连续变化, 即热子是非量子化的准粒子. 热子气在一定温度梯度驱动下的定向运动就形成了热流. 根据Einstein质能关系可以得到热子的质量为mh=E/c2, 即热能除以光速的平方. 热子气是具有真实质量的可压缩流体, 根据气体动力学原理, 并结合理想气体和金属中电子气的统计规律分别得到了两种体系中热子气的状态方程, 通过流体力学分析方法进一步推导出热子气的动量守恒方程, 它是具有阻尼的波动方程, 也就是普适导热定律. 基于热子气概念得到的普适导热定律可以用于定量研究由于热惯性作用而导致的极端条件下的非Fourier导热现象, 例如在超快速激光加热实验中出现的热波现象. 在通常情况下当热质惯性力作用可以忽略时普适导热定律将退化为Fourier定律. 利用两阶精度的有限差分格式, 计算了超快速飞秒激光加热金属薄膜条件下普适导热定律的热波解, 结果显示热波传递的波动性会随着热子气运动惯性作用的增强而增强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号