首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Growth factor signaling leads to the induction or repression of immediate early genes, but how these genes act collectively as effectors of downstream processes remains unresolved. We have used gene trap-coupled microarray analysis to identify and mutate multiple platelet-derived growth factor (PDGF) intermediate early genes in mice. Mutations in these genes lead to a high frequency of phenotypes that affect the same cell types and processes as those controlled by the PDGF pathway. We conclude that these genes form a network that controls specific processes downstream of PDGF signaling.  相似文献   

2.
3.
Dysregulation of the TSC-mTOR pathway in human disease   总被引:26,自引:0,他引:26  
The mammalian target of rapamycin (mTOR) has a central role in the regulation of cell growth. mTOR receives input from multiple signaling pathways, including growth factors and nutrients, to stimulate protein synthesis by phosphorylating key translation regulators such as ribosomal S6 kinase and eukaryote initiation factor 4E binding protein 1. High levels of dysregulated mTOR activity are associated with several hamartoma syndromes, including tuberous sclerosis complex, the PTEN-related hamartoma syndromes and Peutz-Jeghers syndrome. These disorders are all caused by mutations in tumor-suppressor genes that negatively regulate mTOR. Here we discuss the emerging evidence for a functional relationship between the mTOR signaling pathway and several genetic diseases, and we present evidence supporting a model in which dysregulation of mTOR may be a common molecular basis, not only for hamartoma syndromes, but also for other cellular hypertrophic disorders.  相似文献   

4.
Planar cell polarity (PCP) refers to coordinated polarization of cells within the plane of a cell sheet. A conserved signaling pathway is required for the establishment of PCP in epithelial tissues and for polarized cellular rearrangements known as convergent extension. During PCP signaling, core PCP proteins are sorted asymmetrically along the polarization axis; this sorting is thought to direct coordinated downstream morphogenetic changes across the entire tissue. Here, we show that a gene encoding a ciliary protein (a 'ciliary gene'), Ift88, also known as Polaris, is required for establishing epithelial PCP and for convergent extension of the cochlear duct of Mus musculus. We also show that the proper positioning of ciliary basal bodies and the formation of polarized cellular structures are disrupted in mice with mutant ciliary proteins ('ciliary mutants'), whereas core PCP proteins are partitioned normally along the polarization axis. Thus, our data uncover a distinct requirement for ciliary genes in basal body positioning and morphological polarization during PCP regulation.  相似文献   

5.
6.
The availability of complete genome sequence from 12 Drosophila species presents the opportunity to examine how natural selection has affected patterns of gene family evolution and sequence divergence among different components of the innate immune system. We have identified orthologs and paralogs of 245 Drosophila melanogaster immune-related genes in these recently sequenced genomes. Genes encoding effector proteins, and to a lesser extent genes encoding recognition proteins, are much more likely to vary in copy number across species than genes encoding signaling proteins. Furthermore, we can trace the apparent recent origination of several evolutionarily novel immune-related genes and gene families. Using codon-based likelihood methods, we show that immune-system genes, and especially those encoding recognition proteins, evolve under positive darwinian selection. Positively selected sites within recognition proteins cluster in domains involved in recognition of microorganisms, suggesting that molecular interactions between hosts and pathogens may drive adaptive evolution in the Drosophila immune system.  相似文献   

7.
Studies into disorders of extreme growth failure (for example, Seckel syndrome and Majewski osteodysplastic primordial dwarfism type II) have implicated fundamental cellular processes of DNA damage response signaling and centrosome function in the regulation of human growth. Here we report that mutations in ORC1, encoding a subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier-Gorlin syndrome. We establish that these mutations disrupt known ORC1 functions including pre-replicative complex formation and origin activation. ORC1 deficiency perturbs S-phase entry and S-phase progression. Additionally, we show that Orc1 depletion in zebrafish is sufficient to markedly reduce body size during rapid embryonic growth. Our data suggest a model in which ORC1 mutations impair replication licensing, slowing cell cycle progression and consequently impeding growth during development, particularly at times of rapid proliferation. These findings establish a novel mechanism for the pathogenesis of microcephalic dwarfism and show a surprising but important developmental impact of impaired origin licensing.  相似文献   

8.
9.
MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis   总被引:2,自引:0,他引:2  
Disruption of signaling pathways such as those mediated by sonic hedgehog (Shh) or platelet-derived growth factor (Pdgf) causes craniofacial abnormalities, including cleft palate. The role that microRNAs play in modulating palatogenesis, however, is completely unknown. We show that, in zebrafish, the microRNA Mirn140 negatively regulates Pdgf signaling during palatal development, and we provide a mechanism for how disruption of Pdgf signaling causes palatal clefting. The pdgf receptor alpha (pdgfra) 3' UTR contained a Mirn140 binding site functioning in the negative regulation of Pdgfra protein levels in vivo. pdgfra mutants and Mirn140-injected embryos shared a range of facial defects, including clefting of the crest-derived cartilages that develop in the roof of the larval mouth. Concomitantly, the oral ectoderm beneath where these cartilages develop lost pitx2 and shha expression. Mirn140 modulated Pdgf-mediated attraction of cranial neural crest cells to the oral ectoderm, where crest-derived signals were necessary for oral ectodermal gene expression. Mirn140 loss of function elevated Pdgfra protein levels, altered palatal shape and caused neural crest cells to accumulate around the optic stalk, a source of the ligand Pdgfaa. These results suggest that the conserved regulatory interactions of mirn140 and pdgfra define an ancient mechanism of palatogenesis, and they provide candidate genes for cleft palate.  相似文献   

10.
Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate   总被引:3,自引:0,他引:3  
Numerous microRNAs (miRNAs) have been discovered in the genomes of higher eukaryotes, and functional studies indicate that they are important during development. However, little is known concerning the function of individual miRNAs. We approached this problem in zebrafish by combining identification of miRNA expression, functional analyses and experimental validation of potential targets. We show that miR-214 is expressed during early segmentation stages in somites and that varying its expression alters the expression of genes regulated by Hedgehog signaling. Inhibition of miR-214 results in a reduction or loss of slow-muscle cell types. We show that su(fu) mRNA, encoding a negative regulator of Hedgehog signaling, is targeted by miR-214. Through regulation of su(fu), miR-214 enables precise specification of muscle cell types by sharpening cellular responses to Hedgehog.  相似文献   

11.
12.
G protein-coupled receptors (GPCRs), the largest human gene family, are important regulators of signaling pathways. However, knowledge of their genetic alterations is limited. In this study, we used exon capture and massively parallel sequencing methods to analyze the mutational status of 734 GPCRs in melanoma. This investigation revealed that one family member, GRM3, was frequently mutated and that one of its mutations clustered within one position. Biochemical analysis of GRM3 alterations revealed that mutant GRM3 selectively regulated the phosphorylation of MEK, leading to increased anchorage-independent growth and migration. Melanoma cells expressing mutant GRM3 had reduced cell growth and cellular migration after short hairpin RNA-mediated knockdown of GRM3 or treatment with a selective MEK inhibitor, AZD-6244, which is currently being used in phase 2 clinical trials. Our study yields the most comprehensive map of genetic alterations in the GPCR gene family.  相似文献   

13.
Aberrant WNT pathway signaling is an early progression event in 90% of colorectal cancers. It occurs through mutations mainly of APC and less often of CTNNB1 (encoding beta-catenin) or AXIN2 (encoding axin-2, also known as conductin). These mutations allow ligand-independent WNT signaling that culminates in abnormal accumulation of free beta-catenin in the nucleus. We previously identified frequent promoter hypermethylation and gene silencing of the genes encoding secreted frizzled-related proteins (SFRPs) in colorectal cancer. SFRPs possess a domain similar to one in the WNT-receptor frizzled proteins and can inhibit WNT receptor binding to downregulate pathway signaling during development. Here we show that restoration of SFRP function in colorectal cancer cells attenuates WNT signaling even in the presence of downstream mutations. We also show that the epigenetic loss of SFRP function occurs early in colorectal cancer progression and may thus provide constitutive WNT signaling that is required to complement downstream mutations in the evolution of colorectal cancer.  相似文献   

14.
Loeys-Dietz syndrome (LDS) associates with a tissue signature for high transforming growth factor (TGF)-β signaling but is often caused by heterozygous mutations in genes encoding positive effectors of TGF-β signaling, including either subunit of the TGF-β receptor or SMAD3, thereby engendering controversy regarding the mechanism of disease. Here, we report heterozygous mutations or deletions in the gene encoding the TGF-β2 ligand for a phenotype within the LDS spectrum and show upregulation of TGF-β signaling in aortic tissue from affected individuals. Furthermore, haploinsufficient Tgfb2(+/-) mice have aortic root aneurysm and biochemical evidence of increased canonical and noncanonical TGF-β signaling. Mice that harbor both a mutant Marfan syndrome (MFS) allele (Fbn1(C1039G/+)) and Tgfb2 haploinsufficiency show increased TGF-β signaling and phenotypic worsening in association with normalization of TGF-β2 expression and high expression of TGF-β1. Taken together, these data support the hypothesis that compensatory autocrine and/or paracrine events contribute to the pathogenesis of TGF-β-mediated vasculopathies.  相似文献   

15.
The Wnt signaling pathway is essential for development and organogenesis. Wnt signaling stabilizes beta-catenin, which accumulates in the cytoplasm, binds to 1-cell factor (TCF; also known as lymphocyte enhancer-binding factor, LEF) and then upregulates downstream genes. Mutations in CTNNB1 (encoding beta-catenin) or APC (adenomatous polyposis coli) have been reported in human neoplasms including colon cancers and hepatocellular carcinomas (HCCs). Because HCC5 tend to show accumulation of beta-catenin more often than mutations in CTNNB1, we looked for mutations in AXIN1, encoding a key factor for Wnt signaling, in 6 HCC cell lines and 100 primary HCC5. Among the 4 cell lines and 87 HCC5 in which we did not detect CTNNB1 mutations, we identified AXIN1 mutations in 3 cell lines and 6 mutations in 5 of the primary HCCs. In cell lines containing mutations in either gene, we observed increased DNA binding of TCF associated with beta-catenin in nuclei. Adenovirus mediated gene transfer of wild-type AXINI induced apoptosis in hepatocellular and colorectal cancer cells that had accumulated beta-catenin as a consequence of either APC, CTNNB1 or AXIN1 mutation, suggesting that axin may be an effective therapeutic molecule for suppressing growth of hepatocellular and colorectal cancers.  相似文献   

16.
Genomic imprinting is an epigenetic process in which the activity of a gene is determined by its parent of origin. Mechanisms governing genomic imprinting are just beginning to be understood. However, the tendency of imprinted genes to exist in chromosomal clusters suggests a sharing of regulatory elements. To better understand imprinted gene clustering, we disrupted a cluster of imprinted genes on mouse distal chromosome 7 using the Cre/loxP recombination system. In mice carrying a site-specific translocation separating Cdkn1c and Kcnq1, imprinting of the genes retained on chromosome 7, including Kcnq1, Kcnq1ot1, Ascl2, H19 and Igf2, is unaffected, demonstrating that these genes are not regulated by elements near or telomeric to Cdkn1c. In contrast, expression and imprinting of the translocated Cdkn1c, Slc22a1l and Tssc3 on chromosome 11 are affected, consistent with the hypothesis that elements regulating both expression and imprinting of these genes lie within or proximal to Kcnq1. These data support the proposal that chromosomal abnormalities, including translocations, within KCNQ1 that are associated with the human disease Beckwith-Wiedemann syndrome (BWS) may disrupt CDKN1C expression. These results underscore the importance of gene clustering for the proper regulation of imprinted genes.  相似文献   

17.
Lacrimo-auriculo-dento-digital (LADD) syndrome is characterized by lacrimal duct aplasia, malformed ears and deafness, small teeth and digital anomalies. We identified heterozygous mutations in the tyrosine kinase domains of the genes encoding fibroblast growth factor receptors 2 and 3 (FGFR2, FGFR3) in LADD families, and in one further LADD family, we detected a mutation in the gene encoding fibroblast growth factor 10 (FGF10), a known FGFR ligand. These findings increase the spectrum of anomalies associated with abnormal FGF signaling.  相似文献   

18.
19.
To elucidate the genomics of cellular responses to cancer treatment, we analyzed the expression of over 9,600 human genes in acute lymphoblastic leukemia cells before and after in vivo treatment with methotrexate and mercaptopurine given alone or in combination. Based on changes in gene expression, we identified 124 genes that accurately discriminated among the four treatments. Discriminating genes included those involved in apoptosis, mismatch repair, cell cycle control and stress response. Only 14% of genes that changed when these medications were given as single agents also changed when they were given together. These data indicate that lymphoid leukemia cells of different molecular subtypes share common pathways of genomic response to the same treatment, that changes in gene expression are treatment-specific and that gene expression can illuminate differences in cellular response to drug combinations versus single agents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号