首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
对铝电解用惰性阳极的研究和发展进行了回顾和展望,对已经有的各种阳极材料进行了评述。指出惰性阳极面临的主要问题是阳极材料耐电解质和铝的腐蚀性差。铝电解工业现行使用的碳素阳极存在诸多问题如:消耗大量碳素材料、能量损耗、环境污染等。而使用惰性阳极可在一定程度上解决上述问题。惰性阳极的应用将意味着Hall—Héroult法铝电解技术的一次革命,运用惰性电极可以有益于降低成本(15~20%)、减少能量的消耗并且有利于保护环境。对于环境保护而言,从电解槽中释放出污染环境CO_2、CF_4等气体可以彻底消除。铝电解用惰性阳极材料的研究一直是国际上革新铝冶金技术的重要发展方向。  相似文献   

2.
铝电解镍基惰性阳极的研究   总被引:13,自引:0,他引:13  
制备了以Ni2O3、NiO为基体的5种金属陶瓷材料作为铝电解惰性阳极。在烧结过程中发现Ni2O3为基体的阳性转变为NiO,由于晶形转变导致阳破列。NiO为基体的惰性阳极在进行不通电腐蚀试验表明,其抗蚀能力优于SnO2为基体的惰性阳极。  相似文献   

3.
研制了一种新型铝电解金属陶瓷惰性阳极,阳极基体由Fe-Ni-CoAl2O3构成。在石墨坩埚中,960℃温度下,电解质中的氧化铝质量分数为60%,摩尔比为26;阳极电流密度为10 A/cm2,阳极尺寸大小为120 mm×80 mm×15 mm,石墨阴极尺寸大小为120 mm×40 mm×20 mm,通入的直流电为100~300 A,电解时间各为10 h;实验所得的电解铝产品纯度达到98%以上,杂质主要为Fe,Ni,Co;电解后的阳极外观尺寸无明显变化,阳极气体中氧气质量分数达到98%~99%。阳极的反电动势为245 V,比理论分解电压仅高出025 V证明该阳极为惰性阳极,在电解槽中进行的是Al2O3的分解反应。  相似文献   

4.
铝电解镍基惰性阳极的研究(Ⅱ)   总被引:2,自引:0,他引:2  
在文献(1)的基础上制备了三种镍基陶瓷材料作为铝电解惰性阳极材料,经过通电和不通电腐蚀实验了解试验阳极的抗热冲击力及抗腐蚀性能,结果证实实验阳极的年腐蚀率不大于1-3 cm,完全达到了对惰性阳极的要求.  相似文献   

5.
采用灰关联分析方法解析了铝电解5%Ni-NiFe2O4基金属陶瓷惰性阳极的电解腐蚀率与电解参数的关系,建立了预测惰性阳极腐蚀率的人工神经网络模型.研究结果表明:灰关联分析是一种新的惰性阳极腐蚀数据处理方法;根据灰关联度的计算,在很多电解参数中找出了影响惰性阳极腐蚀率的主要因素,即Al2O3质量浓度、电解温度、分子比、面积比和电流密度等,并指出了各因素对电极腐蚀的影响程度;对NiFe2O4基金属陶瓷惰性阳极电解腐蚀率的预测结果与实测值吻合,表明利用所建立的神经网络模型能有效地预测惰性阳极腐蚀率.  相似文献   

6.
电解工艺对NiFe2O4基金属陶瓷阳极耐腐蚀性能的影响   总被引:1,自引:0,他引:1  
研究了5%Ni-NiFe2O4金属陶瓷惰性阳极在冰晶石-氧化铝熔体中的腐蚀行为及电解参数对腐蚀率的影响.研究结果表明:当Al2O3质量分数大于5%或接近饱和时,电极腐蚀率较低;当Al2O3质量分数小于2%时,电极腐蚀加快;当在冰晶石熔体中不加Al2O3时,会发生灾变腐蚀;当分子比为2.2~2.4,电解温度为960℃时,腐蚀率较低;溶解的铝和高电流密度对惰性阳极的正常工作不利,电流密度适当时有利于降低阳极的腐蚀率;导致惰性阳极腐蚀的主要原因有铝热还原,碳化铝的溶解及电沉积、陶瓷基体的氟化反应.  相似文献   

7.
采用二探针法测定铝电解用SnO_2基惰性阳极的电阻率。结果表明,掺加Sb_2O_3,CuO和ZnO,可以通过控价和促进烧结作用而改善阳极导电性;阳极电阻率随温度升高而降低,呈高温半导体特性。  相似文献   

8.
介绍了现代铝工业上新近开发研制的几种电极材料,涉及惰性阴极、惰性阳极、双极性电极等;还研制了低温电解质,使电解温度降低到800~900℃。如果惰性电极与低温电解质配合起来应用,则能够明显减少工业铝生产中的物料消耗,节省电能,增大电解槽生产能力,并改善环境状况,可望大幅度降低生产成本。  相似文献   

9.
NiFe2O4基金属陶瓷材料的制备及其耐腐蚀性能   总被引:5,自引:1,他引:5  
采用传统粉末冶金技术制备了铝电解用Cu-NiFe2O4和Ni-NiFe2O4金属陶瓷惰性阳极,并对其在Na3AlF6-Al2O3熔体中的腐蚀行为进行了研究.研究结果表明:NiFe2O4基金属陶瓷阳极的腐蚀行为与热力学计算结果吻合;金属Cu与NiFe2O4陶瓷的润湿性能不好,Cu-NiFe2O4金属陶瓷的致密化和导电性能难以提高;致密度过低时,会导致金属相高温氧化和电解质浸渗,电极肿胀、开裂;在电解过程中,5%Cu-NiFe2O4存在金属相聚集和在陶瓷基体中Fe优先溶解的现象,但金属铜并未发生阳极溶解;5%Ni-NiFe2O4金属陶瓷易实现致密化烧结,在电解过程中表现出良好的耐腐蚀性能,会发生金属Ni的阳极溶解,并存在陶瓷基体中铁优先溶解的现象.  相似文献   

10.
采用有限体积法仿真计算惰性阳极气体运动及其带动下的电解质流动,并研究工艺及结构参数对阳极气体和电解质流场的影响。研究结果表明:电解质沿阳极中心呈对称循环流动,距离阳极气体越近,电解质流速越大;气体流速随气泡直径的增大而增加,电解质流速先下降后增加,气泡直径控制在3 mm为宜;若电流、电解温度和阳极浸入电解质深度增加,则气体的平均流速降低,电解质平均流速增加,应适当降低电流、电解温度和阳极浸入电解质深度;极距增加,则气体平均流速增加,电解质平均流速降低,可适当增加极距;阳极结构本身对流场结果有一定影响,若阳极半径增加,则气体的平均流速增加,电解质平均流速降低,合理的阳极倒角半径为35~40 mm。  相似文献   

11.
金属陶瓷惰性阳极铝电解扩大实验研究   总被引:2,自引:0,他引:2  
用新研制的铝电解金属陶瓷材料做铝电解阳极,在摩尔分子比为2 8、饱和氧化铝浓度的冰晶石系电解质中进行100A电流电解实验,电解温度为960℃,阳极电流密度为1 0A/cm2·实验结果表明,该金属陶瓷阳极具有优良抗热震性的同时显示出优良的抗氧化耐冰晶石熔盐腐蚀性能,阳极年腐蚀速率为24mm/a,阴极铝的质量达到98%·使用铝参比电极测得在960℃下该阳极的反电动势为2 2V·经奥氏气体分析仪检测表明,释放出的阳极气体中氧气的含量为98%~100%·  相似文献   

12.
金属陶瓷基铝电解惰性阳极材料制备及其非极化腐蚀   总被引:9,自引:2,他引:7  
为了搞清NiFe2O4基金属陶瓷惰性阳极的腐蚀机理,对其复杂腐蚀过程的一个方面非极化腐蚀进行了初步探讨·实验中摸索了阳极材料的制备工艺,发现烧结温度对材料性能影响巨大·采用高温氧化增重法对阳极的氧化腐蚀进行研究,发现其腐蚀过程比较平稳,氧化率增重曲线存在若干起伏,预示着新反应的加入,加快了氧化过程的进行·金属陶瓷阳极试样长时间高温熔盐腐蚀实验发现,不同组成的电解质对试样的腐蚀能力相差较大,含MgF2的电解质对试样的腐蚀能力较强,NaCl含量不同的电解质对试样的腐蚀相差较为显著·  相似文献   

13.
Cu-Ni-Al惰性金属阳极铝电解应用测试   总被引:7,自引:0,他引:7  
采用Cu Ni Al合金作金属阳极 ,在温度 75 0~ 85 0℃ ,电流密度 0 75~ 1 1 0A/cm2 的不同分子比和氧化铝质量分数的Na3 AlF6 NaCl CaF2 Al2 O3 熔盐中进行电解测试·结果表明 ,在不同电解操作条件下该阳极材料的腐蚀程度不一样 ,阳极在熔盐中的腐蚀速率远大于在空气中的氧化腐蚀速率 ,而且阳极电解的腐蚀速率与电解质中的氧化铝质量分数相关 ,氧化铝质量分数大 ,则阳极腐蚀速率小·另外 ,与碳阳极相似的是在高电流密度下腐蚀速率反而小·该材料是一种可开发的惰性阳极材料  相似文献   

14.
大型铁酸镍基金属陶瓷惰性电极电解腐蚀研究   总被引:4,自引:2,他引:2  
采用热压法制备了D150mm×20mm的铁酸镍基金属陶瓷惰性阳极,进行100A规模电解试验·在900℃下,通以100A电流,进行了24h的电解实验,在整个过程中槽电压比较稳定,表现出良好的导电性能·对电解后阳极试样进行电子显微分析,发现电解质对阳极的腐蚀主要有两个过程:首先是AlxOyF(2y+z-3x)-z离子在阳极放电,生成的氧与阳极中的金属发生氧化反应,产生的金属氧化物溶解在电解质熔盐中;其次阳极反应生成的AlF3沉积在阳极中的空隙中·研究认为阳极腐蚀层的热膨胀系数与阳极基体不同,而引起在阳极冷却过程中表面起层、剥离的现象·初步折算的阳极腐蚀速率为18mm/a·  相似文献   

15.
研究了实验室和工业铝电解中发生阳极效应时的电压波形,及其对同一系列中邻槽的影响。根据观测电压波形的结果,提出阳极效应过程三步骤的观点:诱导期、稳定期和熄回期。根据估算,一般阳极效应时高频波的频率在 10 000—20 000 Hz 之间,其影响程度随系列中槽数增多而减小。  相似文献   

16.
本文制备了数种NiO-NiFe_2O_4基金属陶瓷电极材料,找到了较优制备工艺参数和制粉工艺,着重测试了该金属陶瓷材料的导电率,分析了其导电机制,结果表明,采用化学镀铜比机械混合铜所得金属陶瓷的金属含量较少情况下导电率较佳,最后测定了该金属陶瓷用作铝电解惰性阳极的腐蚀速率。  相似文献   

17.
本文用透明电解槽对金属铝在冰晶石一氧化铝熔液中的溶解及阳极效应进行了直接的观察,铝溶解时先放出大量细小的气泡,然后泛起蓝褐色的金属雾,一定时间后铝为一黑褐色结壳,所包裹熔液重新变清,电解后,金属雾很快消失,一旦停止电解,金属雾便重新从铝液上泛起,阳极效应时阳极上产生一股气流喷向阴极,认为铝的溶解形式主要是电化学溶解,阴极极化(电解)可以使铝的溶解得到抑制,阳极喷射则是由于阳极气体膜电离所致,使得电流效率降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号