首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 374 毫秒
1.
Vidale JE  Earle PS 《Nature》2000,404(6775):273-275
The seismological properties of the Earth's inner core have become of particular interest as we understand more about its composition and thermal state. Observations of anisotropy and velocity heterogeneity in the inner core are beginning to reveal how it has grown and whether it convects. The attenuation of seismic waves in the inner core is strong, and studies of seismic body waves have found that this high attenuation is consistent with either scattering or intrinsic attenuation. The outermost portion of the inner core has been inferred to possess layering and to be less anisotropic than at greater depths. Here we present observations of seismic waves scattered in the inner core which follow the expected arrival time of the body-wave reflection from the inner-core boundary. The amplitude of these scattered waves can be explained by stiffness variations of 1.2% with a scale length of 2 kilometres across the outermost 300 km of the inner core. These variations might be caused by variations in composition, by pods of partial melt in a mostly solid matrix or by variations in the orientation or strength of seismic anisotropy.  相似文献   

2.
Niu F  Wen L 《Nature》2001,410(6832):1081-1084
Knowledge of the seismic velocity structure at the top of the Earth's inner core is important for deciphering the physical processes responsible for inner-core growth. Previous global seismic studies have focused on structures found 100 km or deeper within the inner core, with results for the uppermost 100 km available for only isolated regions. Here we present constraints on seismic velocity variations just beneath the inner-core boundary, determined from the difference in travel time between waves reflected at the inner-core boundary and those transmitted through the inner core. We found that these travel-time residuals-observed on both global seismograph stations and several regional seismic networks-are systematically larger, by about 0.8 s, for waves that sample the 'eastern hemisphere' of the inner core (40 degrees E to 180 degrees E) compared to those that sample the 'western hemisphere' (180 degrees W to 40 degrees E). These residuals show no correlation with the angle at which the waves traverse the inner core; this indicates that seismic anisotropy is not strong in this region and that the isotropic seismic velocity of the eastern hemisphere is about 0.8% higher than that of the western hemisphere.  相似文献   

3.
Alfe D  Gillan MJ  Price GD 《Nature》2000,405(6783):172-175
Knowledge of the composition of the Earth's core is important for understanding its melting point and therefore the temperature at the inner-core boundary and the temperature profile of the core and mantle. In addition, the partitioning of light elements between solid and liquid, as the outer core freezes at the inner-core boundary, is believed to drive compositional convection, which in turn generates the Earth's magnetic field. It is generally accepted that the liquid outer core and the solid inner core consist mainly of iron. The outer core, however, is also thought to contain a significant fraction of light elements, because its density--as deduced from seismological data and other measurements--is 6-10 per cent less than that estimated for pure liquid iron. Similar evidence indicates a smaller but still appreciable fraction of light elements in the inner core. The leading candidates for the light elements present in the core are sulphur, oxygen and silicon. Here we obtain a constraint on core composition derived from ab initio calculation of the chemical potentials of light elements dissolved in solid and liquid iron. We present results for the case of sulphur, which provide strong evidence against the proposal that the outer core is close to being a binary iron-sulphur mixture.  相似文献   

4.
Melting of the Earth's inner core   总被引:2,自引:0,他引:2  
Gubbins D  Sreenivasan B  Mound J  Rost S 《Nature》2011,473(7347):361-363
The Earth's magnetic field is generated by a dynamo in the liquid iron core, which convects in response to cooling of the overlying rocky mantle. The core freezes from the innermost surface outward, growing the solid inner core and releasing light elements that drive compositional convection. Mantle convection extracts heat from the core at a rate that has enormous lateral variations. Here we use geodynamo simulations to show that these variations are transferred to the inner-core boundary and can be large enough to cause heat to flow into the inner core. If this were to occur in the Earth, it would cause localized melting. Melting releases heavy liquid that could form the variable-composition layer suggested by an anomaly in seismic velocity in the 150 kilometres immediately above the inner-core boundary. This provides a very simple explanation of the existence of this layer, which otherwise requires additional assumptions such as locking of the inner core to the mantle, translation from its geopotential centre or convection with temperature equal to the solidus but with composition varying from the outer to the inner core. The predominantly narrow downwellings associated with freezing and broad upwellings associated with melting mean that the area of melting could be quite large despite the average dominance of freezing necessary to keep the dynamo going. Localized melting and freezing also provides a strong mechanism for creating seismic anomalies in the inner core itself, much stronger than the effects of variations in heat flow so far considered.  相似文献   

5.
Wookey J  Helffrich G 《Nature》2008,454(7206):873-876
Since the discovery of the Earth's core a century ago, and the subsequent discovery of a solid inner core (postulated to have formed by the freezing of iron) seismologists have striven to understand this most remote part of the deep Earth. The most direct evidence for a solid inner core would be the observation of shear-mode body waves that traverse it, but these phases are extremely difficult to observe. Two reported observations in short-period data have proved controversial. Arguably more successful have been studies of longer-period data, but such averaging limits the usefulness of the observations to reported sightings. We present two observations of an inner-core shear-wave phase at higher frequencies in stacked data from the Japanese High-Sensitivity Array, Hi-Net. From an analysis of timing, amplitude and waveform of the 'PKJKP' phase we derive constraints on inner-core compressional-wave velocity and shear attenuation at about 0.3 Hz which differ from standard isotropic core models. We can explain waveform features and can partially reconcile the otherwise large differences between core wavespeed and attenuation models that our observations apparently suggest if we invoke shear-wave anisotropy in the inner core. A simple model of an inner core composed of hexagonal close-packed iron with its c axis aligned perpendicular to the rotation axis yields anisotropy that is compatible with both the shear-wave anisotropy that we observe and the well-established 3 per cent compressional-wave anisotropy.  相似文献   

6.
Dobson DP  Brodholt JP 《Nature》2005,434(7031):371-374
Ultralow-velocity zones (ULVZs) are regions of the Earth's core-mantle boundary about 1-10 kilometres thick exhibiting seismic velocities that are lower than radial-Earth reference models by about 10-20 per cent for compressional waves and 10-30 per cent for shear waves. It is also thought that such regions have an increased density of about 0-20 per cent (ref. 1). A number of origins for ULVZs have been proposed, such as ponding of dense silicate melt, core-mantle reaction zones or underside sedimentation from the core. Here we suggest that ULVZs might instead be relics of banded iron formations subducted to the core-mantle boundary between 2.8 and 1.8 billion years ago. Consisting mainly of interbedded iron oxides and silica, such banded iron formations were deposited in the world's oceans during the late Archaean and early Proterozoic eras. We argue that these layers, as part of the ocean floor, would be recycled into the Earth's interior by subduction, sink to the bottom of the mantle and may explain all of the observed features of ULVZs.  相似文献   

7.
The transition from the Earth's solid inner core to liquid outer core is the location where the inner core grows and from which compositional convection in the outer core originates. Most seismological models of the Earth describe the inner-core boundary as sharp and simple, although experimental data requiring the presence of a thin transition layer at the bottom of the outer core have been reported. The density jump at the inner-core boundary--an important parameter determining gravitational energy release and constraining the compositional difference between the inner and outer core-is also not well known. Estimates of this density jump obtained using free-oscillation eigenfrequencies give low values of 0.25-1.0 g cm(-3), whereas a method using the amplitude ratio of core-reflected phases yielded values of 0.6-1.8 g cm(-3) (refs 14, 15, 16-17). Here we analyse properties of waves precritically reflected from the Earth's inner core (PKiKP phases) that show significant variability in amplitude, consistent high-frequency content and stable travel times with respect to a standard Earth model. We infer that the data are best explained by a mosaic structure of the inner core's surface. Such a mosaic may be composed of patches in which the transition from solid inner to liquid outer core includes a thin partially liquid layer interspersed with patches containing a sharp transition.  相似文献   

8.
Hernlund JW  Thomas C  Tackley PJ 《Nature》2005,434(7035):882-886
The thermal structure of the Earth's lowermost mantle--the D' layer spanning depths of approximately 2,600-2,900 kilometres--is key to understanding the dynamical state and history of our planet. Earth's temperature profile (the geotherm) is mostly constrained by phase transitions, such as freezing at the inner-core boundary or changes in crystal structure within the solid mantle, that are detected as discontinuities in seismic wave speed and for which the pressure and temperature conditions can be constrained by experiment and theory. A recently discovered phase transition at pressures of the D' layer is ideally situated to reveal the thermal structure of the lowermost mantle, where no phase transitions were previously known to exist. Here we show that a pair of seismic discontinuities observed in some regions of D' can be explained by the same phase transition as the result of a double-crossing of the phase boundary by the geotherm at two different depths. This simple model can also explain why a seismic discontinuity is not observed in some other regions, and provides new constraints for the magnitude of temperature variations within D'.  相似文献   

9.
Aubert J  Amit H  Hulot G  Olson P 《Nature》2008,454(7205):758-761
Seismic waves sampling the top 100 km of the Earth's inner core reveal that the eastern hemisphere (40 degrees E-180 degrees E) is seismically faster, more isotropic and more attenuating than the western hemisphere. The origin of this hemispherical dichotomy is a challenging problem for our understanding of the Earth as a system of dynamically coupled layers. Previously, laboratory experiments have established that thermal control from the lower mantle can drastically affect fluid flow in the outer core, which in turn can induce textural heterogeneity on the inner core solidification front. The resulting texture should be consistent with other expected manifestations of thermal mantle control on the geodynamo, specifically magnetic flux concentrations in the time-average palaeomagnetic field over the past 5 Myr, and preferred eddy locations in flows imaged below the core-mantle boundary by the analysis of historical geomagnetic secular variation. Here we show that a single model of thermochemical convection and dynamo action can account for all these effects by producing a large-scale, long-term outer core flow that couples the heterogeneity of the inner core with that of the lower mantle. The main feature of this thermochemical 'wind' is a cyclonic circulation below Asia, which concentrates magnetic field on the core-mantle boundary at the observed location and locally agrees with core flow images. This wind also causes anomalously high rates of light element release in the eastern hemisphere of the inner core boundary, suggesting that lateral seismic anomalies at the top of the inner core result from mantle-induced variations in its freezing rate.  相似文献   

10.
Seismological body-wave and free-oscillation studies of the Earth's solid inner core have revealed that compressional waves traverse the inner core faster along near-polar paths than in the equatorial plane. Studies have also documented local deviations from this first-order pattern of anisotropy on length scales ranging from 1 to 1,000 km (refs 3, 4). These observations, together with reports of the differential rotation of the inner core, have generated considerable interest in the physical state and dynamics of the inner core, and in the structure and elasticity of its main constituent, iron, at appropriate conditions of pressure and temperature. Here we report first-principles calculations of the structure and elasticity of dense hexagonal close-packed (h.c.p.) iron at high temperatures. We find that the axial ratio c/a of h.c.p. iron increases substantially with increasing temperature, reaching a value of nearly 1.7 at a temperature of 5,700 K, where aggregate bulk and shear moduli match those of the inner core. As a consequence of the increasing c/a ratio, we have found that the single-crystal longitudinal anisotropy of h.c.p. iron at high temperature has the opposite sense from that at low temperature. By combining our results with a simple model of polycrystalline texture in the inner core, in which basal planes are partially aligned with the rotation axis, we can account for seismological observations of inner-core anisotropy.  相似文献   

11.
Helffrich G  Kaneshima S 《Nature》2010,468(7325):807-810
Light elements must be present in the nearly pure iron core of the Earth to match the remotely observed properties of the outer and inner cores. Crystallization of the inner core excludes light elements from the solid, concentrating them in liquid near the inner-core boundary that potentially rises and collects at the top of the core, and this may have a seismically observable signal. Here we present array-based observations of seismic waves sensitive to this part of the core whose wave speeds require there to be radial compositional variation in the topmost 300?km of the outer core. The velocity profile significantly departs from that of compression of a homogeneous liquid. Total light-element enrichment is up to five weight per cent at the top of the core if modelled in the Fe-O-S system. The stratification suggests the existence of a subadiabatic temperature gradient at the top of the outer core.  相似文献   

12.
Rost S  Garnero EJ  Williams Q  Manga M 《Nature》2005,435(7042):666-669
Recent seismological discoveries have indicated that the Earth's core-mantle boundary is far more complex than a simple boundary between the molten outer core and the silicate mantle. Instead, its structural complexities probably rival those of the Earth's crust. Some regions of the lowermost mantle have been observed to have seismic wave speed reductions of at least 10 per cent, which appear not to be global in extent. Here we present robust evidence for an 8.5-km-thick and approximately 50-km-wide pocket of dense, partially molten material at the core-mantle boundary east of Australia. Array analyses of an anomalous precursor to the reflected seismic wave ScP reveal compressional and shear-wave velocity reductions of 8 and 25 per cent, respectively, and a 10 per cent increase in density of the partially molten aggregate. Seismological data are incompatible with a basal layer composed of pure melt, and thus require a mechanism to prevent downward percolation of dense melt within the layer. This may be possible by trapping of melt by cumulus crystal growth following melt drainage from an anomalously hot overlying region of the lowermost mantle. This magmatic evolution and the resulting cumulate structure seem to be associated with overlying thermal instabilities, and thus may mark a root zone of an upwelling plume.  相似文献   

13.
Scherstén A  Elliott T  Hawkesworth C  Norman M 《Nature》2004,427(6971):234-237
Osmium isotope ratios provide important constraints on the sources of ocean-island basalts, but two very different models have been put forward to explain such data. One model interprets (187)Os-enrichments in terms of a component of recycled oceanic crust within the source material. The other model infers that interaction of the mantle with the Earth's outer core produces the isotope anomalies and, as a result of coupled (186)Os-(187)Os anomalies, put time constraints on inner-core formation. Like osmium, tungsten is a siderophile ('iron-loving') element that preferentially partitioned into the Earth's core during core formation but is also 'incompatible' during mantle melting (it preferentially enters the melt phase), which makes it further depleted in the mantle. Tungsten should therefore be a sensitive tracer of core contributions in the source of mantle melts. Here we present high-precision tungsten isotope data from the same set of Hawaiian rocks used to establish the previously interpreted (186)Os-(187)Os anomalies and on selected South African rocks, which have also been proposed to contain a core contribution. None of the samples that we have analysed have a negative tungsten isotope value, as predicted from the core-contribution model. This rules out a simple core-mantle mixing scenario and suggests that the radiogenic osmium in ocean-island basalts can better be explained by the source of such basalts containing a component of recycled crust.  相似文献   

14.
Seismological studies have revealed that a complex texture or heterogeneity exists in the Earth's inner core and at the boundary between core and mantle. These studies highlight the importance of understanding the properties of iron when modelling the composition and dynamics of the core and the interaction of the core with the lowermost mantle. One of the main problems in inferring the composition of the lowermost mantle is our lack of knowledge of the high-pressure and high-temperature chemical reactions that occur between iron and the complex Mg-Fe-Si-Al-oxides which are thought to form the bulk of the Earth's lower mantle. A number of studies have demonstrated that iron can react with MgSiO3-perovskite at high pressures and high temperatures, and it was proposed that the chemical nature of this process involves the reduction of silicon by the more electropositive iron. Here we present a study of the interaction between iron and corundum (Al(2)O3) in electrically- and laser-heated diamond anvil cells at 2,000-2,200 K and pressures up to 70 GPa, simulating conditions in the Earth's deep interior. We found that at pressures above 60 GPa and temperatures of 2,200 K, iron and corundum react to form iron oxide and an iron-aluminium alloy. Our results demonstrate that iron is able to reduce aluminium out of oxides at core-mantle boundary conditions, which could provide an additional source of light elements in the Earth's core and produce significant heterogeneity at the core-mantle boundary.  相似文献   

15.
Thermal and electrical conductivity of iron at Earth's core conditions   总被引:1,自引:0,他引:1  
Pozzo M  Davies C  Gubbins D  Alfè D 《Nature》2012,485(7398):355-358
The Earth acts as a gigantic heat engine driven by the decay of radiogenic isotopes and slow cooling, which gives rise to plate tectonics, volcanoes and mountain building. Another key product is the geomagnetic field, generated in the liquid iron core by a dynamo running on heat released by cooling and freezing (as the solid inner core grows), and on chemical convection (due to light elements expelled from the liquid on freezing). The power supplied to the geodynamo, measured by the heat flux across the core-mantle boundary (CMB), places constraints on Earth's evolution. Estimates of CMB heat flux depend on properties of iron mixtures under the extreme pressure and temperature conditions in the core, most critically on the thermal and electrical conductivities. These quantities remain poorly known because of inherent experimental and theoretical difficulties. Here we use density functional theory to compute these conductivities in liquid iron mixtures at core conditions from first principles--unlike previous estimates, which relied on extrapolations. The mixtures of iron, oxygen, sulphur and silicon are taken from earlier work and fit the seismologically determined core density and inner-core boundary density jump. We find both conductivities to be two to three times higher than estimates in current use. The changes are so large that core thermal histories and power requirements need to be reassessed. New estimates indicate that the adiabatic heat flux is 15 to 16 terawatts at the CMB, higher than present estimates of CMB heat flux based on mantle convection; the top of the core must be thermally stratified and any convection in the upper core must be driven by chemical convection against the adverse thermal buoyancy or lateral variations in CMB heat flow. Power for the geodynamo is greatly restricted, and future models of mantle evolution will need to incorporate a high CMB heat flux and explain the recent formation of the inner core.  相似文献   

16.
The inner core has a differential rotation relative to the crust and mantle, the relative linear velocity between the solid inner core and the molten outer core is the biggest at the equator and zero at pole area. As a result, the inner core grows faster at the equator than at the pole area. The gravitational force drives the material flow from the equator to the pole area and makes the inner core remain quasi-orbicular. The corresponding axial symmetric stress field makesc-axes of hexagonal close packed (hcp) iron align with inner core’s rotation axis, resulting in observed seismic anisotropy.  相似文献   

17.
18.
19.
The boundary between the Earth's metallic core and its silicate mantle is characterized by strong lateral heterogeneity and sharp changes in density, seismic wave velocities, electrical conductivity and chemical composition. To investigate the composition and properties of the lowermost mantle, an understanding of the chemical reactions that take place between liquid iron and the complex Mg-Fe-Si-Al-oxides of the Earth's lower mantle is first required. Here we present a study of the interaction between iron and silica (SiO2) in electrically and laser-heated diamond anvil cells. In a multianvil apparatus at pressures up to 140 GPa and temperatures over 3,800 K we simulate conditions down to the core-mantle boundary. At high temperature and pressures below 40 GPa, iron and silica react to form iron oxide and an iron-silicon alloy, with up to 5 wt% silicon. At pressures of 85-140 GPa, however, iron and SiO2 do not react and iron-silicon alloys dissociate into almost pure iron and a CsCl-structured (B2) FeSi compound. Our experiments suggest that a metallic silicon-rich B2 phase, produced at the core-mantle boundary (owing to reactions between iron and silicate), could accumulate at the boundary between the mantle and core and explain the anomalously high electrical conductivity of this region.  相似文献   

20.
The plastic deformation of iron at pressures of the Earth's inner core   总被引:1,自引:0,他引:1  
Wenk HR  Matthies S  Hemley RJ  Mao HK  Shu J 《Nature》2000,405(6790):1044-1047
Soon after the discovery of seismic anisotropy in the Earth's inner core, it was suggested that crystal alignment attained during deformation might be responsible. Since then, several other mechanisms have been proposed to account for the observed anisotropy, but the lack of deformation experiments performed at the extreme pressure conditions corresponding to the solid inner core has limited our ability to determine which deformation mechanism applies to this region of the Earth. Here we determine directly the elastic and plastic deformation mechanism of iron at pressures of the Earth's core, from synchrotron X-ray diffraction measurements of iron, under imposed axial stress, in diamond-anvil cells. The epsilon-iron (hexagonally close packed) crystals display strong preferred orientation, with c-axes parallel to the axis of the diamond-anvil cell. Polycrystal plasticity theory predicts an alignment of c-axes parallel to the compression direction as a result of basal slip, if basal slip is either the primary or a secondary slip system. The experiments provide direct observations of deformation mechanisms that occur in the Earth's inner core, and introduce a method for investigating, within the laboratory, the rheology of materials at extreme pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号