首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The splenomegaly and the appearance of a significant number of CFU-E (erythroid colony-forming units) and BFU-E1 (erythroid burst-forming units) in the Belgrade laboratory rat (b/b) spleen prompted us to analyse further the molecular evidence for increased hematopoietic proliferation in the b/b spleen. Messenger RNAs (mRNAs) specific for globins, proteins for iron transport and deposition and the band 3 protein were used in rat erythropoietic tissues as markers for proliferation and erythroid differentiation. In the b/b spleen, all mRNAs analysed display an erythroid-specific pattern of expression. This analysis also revealed an enhanced level of mRNA for ferritin in the +/b spleen, whereas erythrocyte-specific mRNA production was normal.  相似文献   

3.
4.
5.
The inner nuclear membrane harbors a unique set of membrane proteins, many of which interact with nuclear intermediate filaments and chromatin components and thus play an important role in nuclear organization and gene expression regulation. These membrane proteins have to be constantly transported into the nucleus from their sites of synthesis in the ER to match the growth of the nuclear membrane during interphase. Many mechanisms have evolved to enable translocation of these proteins to the nucleus. The full range of mechanisms goes from rare autophagy events to regulated translocation using the nuclear pore complexes. Though mechanisms involving nuclear pores are predominant, within this group an enormous mechanistic range is observed from free diffusion through the peripheral channels to many distinct mechanisms involving different nucleoporins and other components of the soluble protein transport machinery in the central channels. This review aims to provide a comprehensive insight into this mechanistic diversity.  相似文献   

6.
7.
Regulation of cyclin-Cdk activity in mammalian cells   总被引:33,自引:0,他引:33  
Cell cycle progression is driven by the coordinated regulation of the activities of cyclin-dependent kinases (Cdks). Of the several mechanisms known to regulate Cdk activity in response to external signals, regulation of cyclin gene expression, post-translational modification of Cdks by phosphorylation-dephosphorylation cascades, and the interaction of cyclin/Cdk complexes with protein inhibitors have been thoroughly studied. During recent years, much attention has also been given to mechanisms that regulate protein degradation by the ubiquitin/proteasome pathway, as well as to the regulation of subcellular localization of the proteins that comprise the intrinsic cell cycle clock. The purpose of the present review is to summarize the most important aspects of the various mechanisms implicated in cell cycle regulation.  相似文献   

8.
9.
10.
11.
Excitatory amino acid transporters (EAATs) are high-affinity Na+-dependent carriers of major importance in maintaining glutamate homeostasis in the central nervous system. EAAT3, the human counterpart of the rodent excitatory amino acid carrier 1 (EAAC1), is encoded by the SLC1A1 gene. EAAT3/EAAC1 is ubiquitously expressed in the brain, mostly in neurons but also in other cell types, such as oligodendrocyte precursors. While most of the glutamate released in the synapses is taken up by the “glial-type” EAATs, EAAT2 (GLT-1 in rodents) and EAAT1 (GLAST), the functional role of EAAT3/EAAC1 is related to the subtle regulation of glutamatergic transmission. Moreover, because it can also transport cysteine, EAAT3/EAAC1 is believed to be important for the synthesis of intracellular glutathione and subsequent protection from oxidative stress. In contrast to other EAATs, EAAT3/EAAC1 is mostly intracellular, and several mechanisms have been described for the rapid regulation of the membrane trafficking of the transporter. Moreover, the carrier interacts with several proteins, and this interaction modulates transport activity. Much less is known about the slow regulatory mechanisms acting on the expression of the transporter, although several recent reports have identified changes in EAAT3/EAAC1 protein level and activity related to modulation of its expression at the gene level. Moreover, EAAT3/EAAC1 expression is altered in pathological conditions, such as hypoxia/ischemia, multiple sclerosis, schizophrenia, and epilepsy. This review summarizes these results and provides an overall picture of changes in EAAT3/EAAC1 expression in health and disease.  相似文献   

12.
13.
14.
15.
16.
17.
18.
The vascular endothelium plays a crucial role in regulating normal blood vessel physiology. The gene products responsible are commonly expressed exclusively, or preferentially, in this cell type. However, despite the importance of regulated gene expression in the vascular endothelium, relatively little is known about the mechanisms that restrict endothelial-specific gene expression to this cell type. While significant progress has been made towards understanding the regulation of endothelial genes through cis/trans paradigms, it has become apparent that additional mechanisms must also be operative. For example, chromatin-based mechanisms, including cell-specific DNA methylation patterns and post-translational histone modifications, have recently been demonstrated to play important roles in the cell-specific expression of endothelial nitric oxide synthase (eNOS). This review investigates the involvement of epigenetic regulatory mechanisms in vascular endothelial cell-specific gene expression using eNOS as a prototypical model, and will address the possible contributions of these pathways to diseases of the vasculature. Received 13 September 2005; received after revision 13 October 2005; accepted 19 October 2005  相似文献   

19.
Signalling via the protein kinase Raf-MEK-ERK pathway is of major importance for transformation by oncogenes. To identify genes affected by inhibition of this pathway, c-JUN transformed rat fibroblasts were treated with a MEK1 inhibitor (PD98059) and subjected to two-dimensional gel electrophoresis after cell lysis. Gene products with expression influenced by MEK1 inhibition were determined by mass spectrometry of fragments from in-gel tryptic digestions. The expression of pirin, a nuclear factor I-interacting protein, was lowered after inhibition of MEK1. Western blot analysis revealed increased expression of pirin in RAS and c-JUN transformed cells in the absence of PD98059. Inhibition of MEK1 also led to reduced expression of α-enolase, phosphoglycerate kinase, elongation factor 2 and heterogeneous nuclear ribonucleoprotein A3, the latter two being detected as truncated proteins. In contrast, the level of ornithine aminotransferase was increased. We conclude that inhibition of MEK1 results in major alterations of protein expression in c-JUN transformed cells, suggesting that this pathway is important for oncogene-induced phenotypic changes. Received 30 December 1998; accepted 12 January 1999  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号