首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The Drosophila melanogaster gene Anaplastic lymphoma kinase (Alk) is homologous to mammalian Alk, a member of the Alk/Ltk family of receptor tyrosine kinases (RTKs). We have previously shown that the Drosophila Alk RTK is crucial for visceral mesoderm development during early embryogenesis. Notably, observed Alk visceral mesoderm defects are highly reminiscent of the phenotype reported for the secreted molecule Jelly belly (Jeb). Here we show that Drosophila Alk is the receptor for Jeb in the developing visceral mesoderm, and that Jeb binding stimulates an Alk-driven, extracellular signal-regulated kinase-mediated signalling pathway, which results in the expression of the downstream gene duf (also known as kirre)--needed for muscle fusion. This new signal transduction pathway drives specification of the muscle founder cells, and the regulation of Duf expression by the Drosophila Alk RTK explains the visceral-mesoderm-specific muscle fusion defects observed in both Alk and jeb mutant animals.  相似文献   

2.
B Dickson  F Sprenger  D Morrison  E Hafen 《Nature》1992,360(6404):600-603
Specification of the R7 cell fate in the developing Drosophila eye requires activation of the Sevenless (Sev) receptor tyrosine kinase, located on the surface of the R7 precursor cell, by its interaction with the Boss protein, expressed on the surface of the neighbouring R8 cell. Four genes that participate in the intracellular transmission of this signal have so far been identified and molecularly characterized: Ras1, Sos, Gap1 and sina (refs 4-8). The Drosophila homologue of the mammalian Raf-1 serine/threonine kinase, which has been implicated in signal transduction pathways activated by many receptor tyrosine kinases (reviewed in refs 9 and 10), is encoded by the raf locus (also known as l(1)polehole, Draf-1 or Draf). Here we show that the Drosophila Raf serine/threonine kinase also plays a crucial role in the R7 pathway: the response to Sev activity is dependent on raf function, and a constitutively activated Raf protein can induce R7 cell development in the absence of sev function. We also present genetic evidence suggesting that Raf acts downstream of Ras1 and upstream of Sina in this signal transduction cascade.  相似文献   

3.
4.
5.
Dollar GL  Weber U  Mlodzik M  Sokol SY 《Nature》2005,437(7063):1376-1380
The establishment of polarity in many cell types depends on Lgl, the tumour suppressor product of lethal giant larvae, which is involved in basolateral protein targeting. The conserved complex of Par3, Par6 and atypical protein kinase C phosphorylates and inactivates Lgl at the apical surface; however, the signalling mechanisms that coordinate cell polarization in development are not well defined. Here we show that a vertebrate homologue of Lgl associates with Dishevelled, an essential mediator of Wnt signalling, and that Dishevelled regulates the localization of Lgl in Xenopus ectoderm and Drosophila follicular epithelium. We show that both Lgl and Dsh are required for normal apical-basal polarity of Xenopus ectodermal cells. In addition, we show that the Wnt receptor Frizzled 8, but not Frizzled 7, causes Lgl to dissociate from the cortex with the concomitant loss of its activity in vivo. These findings suggest a molecular basis for the regulation of cell polarity by Frizzled and Dishevelled.  相似文献   

6.
Klein DE  Nappi VM  Reeves GT  Shvartsman SY  Lemmon MA 《Nature》2004,430(7003):1040-1044
The epidermal growth factor receptor (EGFR) has critical functions in development and in many human cancers. During development, the spatial extent of EGFR signalling is regulated by feedback loops comprising both well-understood activators and less well-characterized inhibitors. In Drosophila melanogaster the secreted protein Argos functions as the only known extracellular inhibitor of EGFR, with clearly identified roles in multiple stages of development. Argos is only expressed when the Drosophila EGFR (DER) is activated at high levels, and downregulates further DER signalling. Although there is ample genetic evidence that Argos inhibits DER activation, the biochemical mechanism has not been established. Here we show that Argos inhibits DER signalling without interacting directly with the receptor, but instead by sequestering the DER-activating ligand Spitz. Argos binds tightly to the EGF motif of Spitz and forms a 1:1 (Spitz:Argos) complex that does not bind DER in vitro or at the cell surface. Our results provide an insight into the mechanism of Argos function, and suggest new strategies for EGFR inhibitor design.  相似文献   

7.
Davidson G  Wu W  Shen J  Bilic J  Fenger U  Stannek P  Glinka A  Niehrs C 《Nature》2005,438(7069):867-872
Signalling by Wnt proteins (Wingless in Drosophila) has diverse roles during embryonic development and in adults, and is implicated in human diseases, including cancer. LDL-receptor-related proteins 5 and 6 (LRP5 and LRP6; Arrow in Drosophila) are key receptors required for transmission of Wnt/beta-catenin signalling in metazoa. Although the role of these receptors in Wnt signalling is well established, their coupling with the cytoplasmic signalling apparatus remains poorly defined. Using a protein modification screen for regulators of LRP6, we describe the identification of Xenopus Casein kinase 1 gamma (CK1gamma), a membrane-bound member of the CK1 family. Gain-of-function and loss-of-function experiments show that CK1gamma is both necessary and sufficient to transduce LRP6 signalling in vertebrates and Drosophila cells. In Xenopus embryos, CK1gamma is required during anterio-posterior patterning to promote posteriorizing Wnt/beta-catenin signalling. CK1gamma is associated with LRP6, which has multiple, modular CK1 phosphorylation sites. Wnt treatment induces the rapid CK1gamma-mediated phosphorylation of these sites within LRP6, which, in turn, promotes the recruitment of the scaffold protein Axin. Our results reveal an evolutionarily conserved mechanism that couples Wnt receptor activation to the cytoplasmic signal transduction apparatus.  相似文献   

8.
Bianco A  Poukkula M  Cliffe A  Mathieu J  Luque CM  Fulga TA  Rørth P 《Nature》2007,448(7151):362-365
Although directed migration is a feature of both individual cells and cell groups, guided migration has been studied most extensively for single cells in simple environments. Collective guidance of cell groups remains poorly understood, despite its relevance for development and metastasis. Neural crest cells and neuronal precursors migrate as loosely organized streams of individual cells, whereas cells of the fish lateral line, Drosophila tracheal tubes and border-cell clusters migrate as more coherent groups. Here we use Drosophila border cells to examine how collective guidance is performed. We report that border cells migrate in two phases using distinct mechanisms. Genetic analysis combined with live imaging shows that polarized cell behaviour is critical for the initial phase of migration, whereas dynamic collective behaviour dominates later. PDGF- and VEGF-related receptor and epidermal growth factor receptor act in both phases, but use different effector pathways in each. The myoblast city (Mbc, also known as DOCK180) and engulfment and cell motility (ELMO, also known as Ced-12) pathway is required for the early phase, in which guidance depends on subcellular localization of signalling within a leading cell. During the later phase, mitogen-activated protein kinase and phospholipase Cgamma are used redundantly, and we find that the cluster makes use of the difference in signal levels between cells to guide migration. Thus, information processing at the multicellular level is used to guide collective behaviour of a cell group.  相似文献   

9.
Distinct and evolutionarily conserved signal-transduction cascades mediate the survival or death of cells during development. The c-Jun amino-terminal kinases (JNKs) of the mitogen-activated protein kinase superfamily are involved in apoptotic signalling in various cultured cells. However, the role of the JNK pathway in development is less well understood. In Drosophila, Decapentaplegic (Dpp; a homologue of transforming growth factor-beta) and Wingless (Wg; a Wnt homologue) proteins are secretory morphogens that act cooperatively to induce formation of the proximodistal axis of appendages. Here we show that either decreased Dpp signalling in the distal wing cells or increased Dpp signalling in the proximal wing cells causes apoptosis. Inappropriate levels of Dpp signalling lead to aberrant morphogenesis in the respective wing zones, and these apoptotic zones are also determined by the strength of the Wg signal. Our results indicate that distortion of the positional information determined by Dpp and Wg signalling gradients leads to activation of the JNK apoptotic pathway, and the consequent induction of cell death thereby maintains normal morphogenesis.  相似文献   

10.
11.
Kim TW  Michniewicz M  Bergmann DC  Wang ZY 《Nature》2012,482(7385):419-422
Plants must coordinate the regulation of biochemistry and anatomy to optimize photosynthesis and water-use efficiency. The formation of stomata, epidermal pores that facilitate gas exchange, is highly coordinated with other aspects of photosynthetic development. The signalling pathways controlling stomata development are not fully understood, although mitogen-activated protein kinase (MAPK) signalling is known to have key roles. Here we demonstrate in Arabidopsis that brassinosteroid regulates stomatal development by activating the MAPK kinase kinase (MAPKKK) YDA (also known as YODA). Genetic analyses indicate that receptor kinase-mediated brassinosteroid signalling inhibits stomatal development through the glycogen synthase kinase 3 (GSK3)-like kinase BIN2, and BIN2 acts upstream of YDA but downstream of the ERECTA family of receptor kinases. Complementary in vitro and in vivo assays show that BIN2 phosphorylates YDA to inhibit YDA phosphorylation of its substrate MKK4, and that activities of downstream MAPKs are reduced in brassinosteroid-deficient mutants but increased by treatment with either brassinosteroid or GSK3-kinase inhibitor. Our results indicate that brassinosteroid inhibits stomatal development by alleviating GSK3-mediated inhibition of this MAPK module, providing two key links; that of a plant MAPKKK to its upstream regulators and of brassinosteroid to a specific developmental output.  相似文献   

12.
LDL-receptor-related proteins in Wnt signal transduction   总被引:58,自引:0,他引:58  
Tamai K  Semenov M  Kato Y  Spokony R  Liu C  Katsuyama Y  Hess F  Saint-Jeannet JP  He X 《Nature》2000,407(6803):530-535
The Wnt family of secreted signalling molecules are essential in embryo development and tumour formation. The Frizzled (Fz) family of serpentine receptors function as Wnt receptors, but how Fz proteins transduce signalling is not understood. In Drosophila, arrow phenocopies the wingless (DWnt-1) phenotype, and encodes a transmembrane protein that is homologous to two members of the mammalian low-density lipoprotein receptor (LDLR)-related protein (LRP) family, LRP5 and LRP6 (refs 12-15). Here we report that LRP6 functions as a co-receptor for Wnt signal transduction. In Xenopus embryos, LRP6 activated Wnt-Fz signalling, and induced Wnt responsive genes, dorsal axis duplication and neural crest formation. An LRP6 mutant lacking the carboxyl intracellular domain blocked signalling by Wnt or Wnt-Fz, but not by Dishevelled or beta-catenin, and inhibited neural crest development. The extracellular domain of LRP6 bound Wnt-1 and associated with Fz in a Wnt-dependent manner. Our results indicate that LRP6 may be a component of the Wnt receptor complex.  相似文献   

13.
14.
15.
X Lin  N Perrimon 《Nature》1999,400(6741):281-284
The Drosophila wingless gene (wg) encodes a protein of the Wnt family and is a critical regulator in many developmental processes. Biochemical studies have indicated that heparan sulphate proteoglycans, consisting of a protein core to which heparan sulphate glycosaminoglycans are attached, are important for Wg function. Here we show that, consistent with these findings, the Drosophila gene sulfateless (sfl), which encodes a homologue of vertebrate heparan sulphate N-deacetylase/N-sulphotransferase (an enzyme needed for the modification of heparan sulphate) is essential for Wg signalling. We have identified the product of division abnormally delayed (dally), a glycosyl-phosphatidyl inositol (GPI)-linked glypican, as a heparan sulphate proteoglycan molecule involved in Wg signalling. Our results indicate that Dally may act as a co-receptor for Wg, and that Dally, together with Drosophila Frizzled 2, modulates both short- and long-range activities of Wg.  相似文献   

16.
Identification of Vangl2 and Scrb1 as planar polarity genes in mammals   总被引:13,自引:0,他引:13  
In mammals, an example of planar cell polarity (PCP) is the uniform orientation of the hair cell stereociliary bundles within the cochlea. The PCP pathway of Drosophila refers to a conserved signalling pathway that regulates the coordinated orientation of cells or structures within the plane of an epithelium. Here we show that a mutation in Vangl2, a mammalian homologue of the Drosophila PCP gene Strabismus/Van Gogh, results in significant disruptions in the polarization of stereociliary bundles in mouse cochlea as a result of defects in the direction of movement and/or anchoring of the kinocilium within each hair cell. Similar, but less severe, defects are observed in animals containing a mutation in the LAP protein family gene Scrb1 (homologous with Drosophila scribble). Polarization defects in animals heterozygous for Vangl2 and Scrb1 are comparable with Vangl2 homozygotes, demonstrating genetic interactions between these genes in the regulation of PCP in mammals. These results demonstrate a role for the PCP pathway in planar polarization in mammals, and identify Scrb1 as a PCP gene.  相似文献   

17.
A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation   总被引:1,自引:0,他引:1  
Zeng X  Tamai K  Doble B  Li S  Huang H  Habas R  Okamura H  Woodgett J  He X 《Nature》2005,438(7069):873-877
Signalling by the Wnt family of secreted lipoproteins has essential functions in development and disease. The canonical Wnt/beta-catenin pathway requires a single-span transmembrane receptor, low-density lipoprotein (LDL)-receptor-related protein 6 (LRP6), whose phosphorylation at multiple PPPSP motifs is induced upon stimulation by Wnt and is critical for signal transduction. The kinase responsible for LRP6 phosphorylation has not been identified. Here we provide biochemical and genetic evidence for a 'dual-kinase' mechanism for LRP6 phosphorylation and activation. Glycogen synthase kinase 3 (GSK3), which is known for its inhibitory role in Wnt signalling through the promotion of beta-catenin phosphorylation and degradation, mediates the phosphorylation and activation of LRP6. We show that Wnt induces sequential phosphorylation of LRP6 by GSK3 and casein kinase 1, and this dual phosphorylation promotes the engagement of LRP6 with the scaffolding protein Axin. We show further that a membrane-associated form of GSK3, in contrast with cytosolic GSK3, stimulates Wnt signalling and Xenopus axis duplication. Our results identify two key kinases mediating Wnt co-receptor activation, reveal an unexpected and intricate logic of Wnt/beta-catenin signalling, and illustrate GSK3 as a genuine switch that dictates both on and off states of a pivotal regulatory pathway.  相似文献   

18.
Glycosaminoglycans such as heparan sulphate and chondroitin sulphate are extracellular sugar chains involved in intercellular signalling. Disruptions of genes encoding enzymes that mediate glycosaminoglycan biosynthesis have severe consequences in Drosophila and mice. Mutations in the Drosophila gene sugarless, which encodes a UDP-glucose dehydrogenase, impairs developmental signalling through the Wnt family member Wingless, and signalling by the fibroblast growth factor and Hedgehog pathways. Heparan sulphate is involved in these pathways, but little is known about the involvement of chondroitin. Undersulphated and oversulphated chondroitin sulphate chains have been implicated in other biological processes, however, including adhesion of erythrocytes infected with malaria parasite to human placenta and regulation of neural development. To investigate chondroitin functions, we cloned a chondroitin synthase homologue of Caenorhabditis elegans and depleted expression of its product by RNA-mediated interference and deletion mutagenesis. Here we report that blocking chondroitin synthesis results in cytokinesis defects in early embryogenesis. Reversion of cytokinesis is often observed in chondroitin-depleted embryos, and cell division eventually stops, resulting in early embryonic death. Our findings show that chondroitin is required for embryonic cytokinesis and cell division.  相似文献   

19.
Requirement of the Drosophila raf homologue for torso function   总被引:17,自引:0,他引:17  
L Ambrosio  A P Mahowald  N Perrimon 《Nature》1989,342(6247):288-291
In Drosophila the correct formation of the most anterior and posterior regions of the larva, acron and telson is dependent on the maternally expressed terminal class of genes. In their absence, the anterior head skeleton is truncated and all the structures posterior to the abdominal segment seven are not formed. The protein predicted to be encoded by one of these genes, torso (tor), seems to be a transmembrane protein with an extracytoplasmic domain acting as a receptor and a cytoplasmic domain containing tyrosine kinase activity. Here we report that another member of the terminal-genes class, l(1)polehole (l(1)ph), which is also zygotically expressed, is the Drosophila homologue of the v-raf oncogene and encodes a potential serine-and-threonine kinase. We also show that functional l(1)ph gene product is required for the expression of a gain-of-function tor mutant phenotype, indicating that l(1)ph acts downstream of tor. Together, these results support the idea that the induction of terminal development occurs through a signal transduction system, involving the local activation of the tor-encoded tyrosine kinase at the anterior and posterior egg poles, resulting in the phosphorylation of the l(1)ph gene product. In turn, downstream target proteins may be phosphorylated, ultimately leading to the regionalized expression of zygotic target genes. Such a process is in agreement with the finding that both tor and l(1)ph messenger RNAs are evenly distributed.  相似文献   

20.
LDL-receptor-related protein 6 is a receptor for Dickkopf proteins   总被引:42,自引:0,他引:42  
Mao B  Wu W  Li Y  Hoppe D  Stannek P  Glinka A  Niehrs C 《Nature》2001,411(6835):321-325
Wnt glycoproteins have been implicated in diverse processes during embryonic patterning in metazoa. They signal through frizzled-type seven-transmembrane-domain receptors to stabilize beta-catenin. Wnt signalling is antagonized by the extracellular Wnt inhibitor dickkopf1 (dkk1), which is a member of a multigene family. dkk1 was initially identified as a head inducer in Xenopus embryos but the mechanism by which it blocks Wnt signalling is unknown. LDL-receptor-related protein 6 (LRP6) is required during Wnt/beta-catenin signalling in Drosophila, Xenopus and mouse, possibly acting as a co-receptor for Wnt. Here we show that LRP6 (ref. 7) is a specific, high-affinity receptor for Dkk1 and Dkk2. Dkk1 blocks LRP6-mediated Wnt/beta-catenin signalling by interacting with domains that are distinct from those required for Wnt/Frizzled interaction. dkk1 and LRP6 interact antagonistically during embryonic head induction in Xenopus where LRP6 promotes the posteriorizing role of Wnt/beta-catenin signalling. Thus, DKKs inhibit Wnt co-receptor function, exemplifying the modulation of LRP signalling by antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号