首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
It has been suggested that Hox genes play an important part in the patterning of limbs, vertebrae and craniofacial structures by providing an ordered molecular system of positional values, termed the Hox code. Little is known about the nature of the signals that govern the establishment and regulation of Hox genes, but retinoic acid can affect the expression of these genes in cell lines and in embryonic tissues. On the basis of experimental and clinical evidence, the hindbrain and branchial region of the head are particularly sensitive to the effects of retinoic acid but the phenotypes are complex and hard to interpret, and how and if they relate to Hox expression has not been clear. Here we follow the changes induced by retinoic acid to hindbrain segmentation and the branchial arches using transgenic mice which contain lacZ reporter genes that reveal the endogenous segment-restricted expression of the Hox-B1 (Hox-2.9), Hox-B2(Hox-2.8) and Krox-20 genes. Our results show that these genes rapidly respond to exposure to retinoic acid at preheadfold stages and undergo a progressive series of changes in segmental expression that are associated with specific phenotypes in hindbrain of first branchial arch. Together the molecular and anatomical alterations indicate that retinoic acid has induced changes in the hindbrain Hox code which result in the homeotic transformation of rhombomeres (r) 2/3 to an r4/5 identity. A main feature of this rhombomeric phenotype is that the trigeminal motor nerve is transformed to a facial identity. Furthermore, in support of this change in rhombomeric identity, neural crest cells derived from r2/3 also express posterior Hox markers suggesting that the retinoic acid-induced transformation extends to multiple components of the first branchial arch.  相似文献   

4.
A distinct Hox code for the branchial region of the vertebrate head.   总被引:20,自引:0,他引:20  
The branchial region of the vertebrate head forms through complex interactions involving rhombomeric segments, neural crest and branchial arches. It is though that aspects of their patterning mechanisms are linked and involve Hox-2 genes, whose overlapping and spatially restricted expression domains represent a combinatorial code for generating regional diversity. Vertebrates possess four Hox clusters of Antennapedia class homeobox genes, related to each other by duplication and divergence from a common ancestral complex. In consequence, at equivalent positions in different clusters there are highly related genes known as subfamilies or paralogous groups. As Hox-2 genes cannot fully account for patterning individual rhombomeres, we investigated whether offsets in expression limits of paralogous genes could account for the generation of regional diversity. We report here that, with the exception of the labial subfamily, paralogues show identical expression limits in rhombomeres, cranial ganglia and branchial arches, providing a combinatorial Hox code for the branchial region that seems to be different in organization to that of the trunk.  相似文献   

5.
Bilaterian animals have a Hox gene cluster essential for patterning the main body axis, and a ParaHox gene cluster. Comparison of Hox and ParaHox genes has led workers to postulate that both clusters originated from the duplication of an ancient cluster named ProtoHox, which contained up to four genes with at least the precursors of anterior and posterior Hox/ParaHox genes. However, the way in which genes diversified within the ProtoHox, Hox and ParaHox clusters remains unclear because no systematic study of non-bilaterian animals exists. Here we characterize the full Hox/ParaHox gene complements and genomic organization in two cnidarian species (Nematostella vectensis and Hydra magnipapillata), and suggest a ProtoHox cluster simpler than originally thought on the basis of three arguments. First, both species possess bilaterian-like anterior Hox genes, but their non-anterior genes do not appear as counterparts of either bilaterian central or posterior genes; second, two clustered ParaHox genes, Gsx and a gene related to Xlox and Cdx, are found in Nematostella vectensis; and third, we do not find clear phylogenetic support for a common origin of bilaterian Cdx and posterior genes, which might therefore have appeared after the ProtoHox cluster duplication. Consequently, the ProtoHox cluster might have consisted of only two anterior genes. Non-anterior genes could have appeared independently in the Hox and ParaHox clusters, possibly after the separation of bilaterians and cnidarians.  相似文献   

6.
A Awgulewitsch  D Jacobs 《Nature》1992,358(6384):341-344
The striking similarities in the structure, organization and anterior-posterior expression patterns between the murine Hox gene system and the Drosophila homeotic gene complexes, called HOM-C (ref. 3), may point to highly conserved mechanisms for specifying positional identities (reviewed in ref. 4). Strong support for this concept lies in the observation of conserved colinearity between the genomic order of the Hox/HOM genes and their unique successive expression domains along the anterior-posterior axes of both mouse and fly embryos. These unique and precise expression patterns appear to be facilitated by multiple cis-regulatory elements (reviewed in ref. 5). One of the few elements characterized in detail is the autoregulatory enhancer of the homeotic gene Deformed (Dfd), which supports expression in subregions of posterior head segments of Drosophila embryos. Here we present evidence that this enhancer is capable of conferring reporter gene expression to a discrete subregion of the hindbrain in transgenic mouse embryos. Remarkably, this anterior-posterior subregion lies within the common anterior expression domain of the Dfd cognate Hox genes in the postotic hindbrain. Our results indicate that the Dfd autoregulatory enhancer is part of a highly conserved mechanism for establishing region-specific gene expression along the anterior-posterior axis of the embryo.  相似文献   

7.
Gebelein B  McKay DJ  Mann RS 《Nature》2004,431(7009):653-659
During Drosophila embryogenesis, segments, each with an anterior and posterior compartment, are generated by the segmentation genes while the Hox genes provide each segment with a unique identity. These two processes have been thought to occur independently. Here we show that abdominal Hox proteins work directly with two different segmentation proteins, Sloppy paired and Engrailed, to repress the Hox target gene Distalless in anterior and posterior compartments, respectively. These results suggest that segmentation proteins can function as Hox cofactors and reveal a previously unanticipated use of compartments for gene regulation by Hox proteins. Our results suggest that these two classes of proteins may collaborate to directly control gene expression at many downstream target genes.  相似文献   

8.
E Moreno  G Morata 《Nature》1999,400(6747):873-877
The homeobox gene caudal (cad) has a maternal embryonic function that establishes the antero-posterior body axis of Drosophila. It also has a conserved late embryonic and imaginal function related to the development of the posterior body region. Here we report the developmental role of cad in adult Drosophila. It is required for the normal development of the analia structures, which derive from the most posterior body segment. In the absence of cad function, the analia develop like the immediately anterior segment (male genitalia), following the transformation rule of the canonical Hox genes. We also show that cad can induce ectopic analia development if expressed in the head or wing. We propose that cad is the Hox gene that determines the development of the fly's most posterior segment. cad acts in combination with the Hedgehog (Hh) pathway to specify the different components of the analia: the activities of cad and of the Hh pathway induce Distal-less expression that, together with cad, promote external analia development. In the absence of the Hh pathway, cad induces internal analia development, probably by activating the brachyenteron and even-skipped genes.  相似文献   

9.
The homoebox-containing genes of the Hox-5 complex are expressed in different but overlapping domains in limbs during murine development. The more 5' the position of these genes in the complex, the later and more distal is their expression. Antero-posterior differences are also observed. A model is proposed that accounts for the establishment of these expression domains in relation to the existence of a morphogen released by the zone of polarizing activity. Comparison of these observations with the expression patterns of the genes of Hox complexes in the early embryo suggests that similar molecular mechanisms are involved in the positional signalling along the axes of both the embryonic trunk and the fetal limbs.  相似文献   

10.
The comparison of Hox genes between vertebrates and their closest invertebrate relatives (amphioxus and ascidia) highlights two derived features of Hox genes in vertebrates: duplication of the Hox gene cluster, and an elaboration of Hox expression patterns and roles compared with non-vertebrate chordates. We have investigated how new expression domains and their associated developmental functions evolved, by testing the cis-regulatory activity of genomic DNA fragments from the cephalochordate amphioxus Hox cluster in transgenic mouse and chick embryos. Here we present evidence for the conservation of cis-regulatory mechanisms controlling gene expression in the neural tube for half a billion years of evolution, including a dependence on retinoic acid signalling. We also identify amphioxus Hox gene regulatory elements that drive spatially localized expression in vertebrate neural crest cells, in derivatives of neurogenic placodes and in branchial arches, despite the fact that cephalochordates lack both neural crest and neurogenic placodes. This implies an elaboration of cis-regulatory elements in the Hox gene cluster of vertebrate ancestors during the evolution of craniofacial patterning.  相似文献   

11.
12.
13.
D G Wilkinson  S Bhatt  M Cook  E Boncinelli  R Krumlauf 《Nature》1989,341(6241):405-409
The vertebrate hindbrain develops in a segmental pattern, with distinctive groups of neurons originating from different segments. We report here that members of the Hox-2 cluster of murine homoeobox genes are expressed in segment-specific patterns in the developing hindbrain, with successive genes having boundaries at two-segment intervals. These data indicate that Hox genes specify segment phenotype, a role analogous to that of their Drosophila homologues.  相似文献   

14.
15.
A deficiency of the homeotic complex of the beetle Tribolium   总被引:10,自引:0,他引:10  
Stuart JJ  Brown SJ  Beeman RW  Denell RE 《Nature》1991,350(6313):72-74
In Drosophila, the establishment of regional commitments along most of the anterior/posterior axis of the developing embryo depends on two clusters of homeotic genes: the Antennapedia complex (ANT-C) and the bithorax complex (BX-C). The red flour beetle has a single complex (HOM-C) representing the homologues of the ANT-C and BX-C in juxtaposition. Beetles trans-heterozygous for two particular HOM-C mutations spontaneously generate a large deficiency, presumably by an exchange within the common region of two overlapping inversions. Genetic and molecular results indicate that this deficiency spans at least the interval between the Deformed and abdominal-A homologues. In deficiency homozygous embryos, all gnathal, thoracic and abdominal segments develop antennal appendages, suggesting that a gene(s) has been deleted that acts to distinguish trunk from head. There is no evidence that beetles have a homologue of the segmentation gene fushi tarazu of similar genomic location and function. On the basis of the genetic tractability, convenient genome size and organization of Tribolium, and its relatively long phylogenetic divergence from Drosophila (>300 million years), we have integrated developmental genetic and molecular analyses of the HOM-C. We isolated about 70 mutations in the complex representing at least six complementation groups. The homeotic phenotypes of adults and lethal embryos lead us to believe that these beetle genes are homologous with the Drosophila genes indicated in Fig. 1 (see text).  相似文献   

16.
Hox protein mutation and macroevolution of the insect body plan   总被引:23,自引:0,他引:23  
Ronshaugen M  McGinnis N  McGinnis W 《Nature》2002,415(6874):914-917
  相似文献   

17.
Structure of a DNA-bound Ultrabithorax-Extradenticle homeodomain complex   总被引:6,自引:0,他引:6  
Passner JM  Ryoo HD  Shen L  Mann RS  Aggarwal AK 《Nature》1999,397(6721):714-719
  相似文献   

18.
Maintenance of functional equivalence during paralogous Hox gene evolution   总被引:15,自引:0,他引:15  
Greer JM  Puetz J  Thomas KR  Capecchi MR 《Nature》2000,403(6770):661-665
Biological diversity is driven mainly by gene duplication followed by mutation and selection. This divergence in either regulatory or protein-coding sequences can result in quite different biological functions for even closely related genes. This concept is exemplified by the mammalian Hox gene complex, a group of 39 genes which are located on 4 linkage groups, dispersed on 4 chromosomes. The evolution of this complex began with amplification in cis of a primordial Hox gene to produce 13 members, followed by duplications in trans of much of the entire unit. As a consequence, Hox genes that occupy the same relative position along the 5' to 3' chromosomal coordinate (trans-paralogous genes) share more similarity in sequence and expression pattern than do adjacent Hox genes on the same chromosome. Studies in mice indicate that although individual family members may have unique biological roles, they also share overlapping functions with their paralogues. Here we show that the proteins encoded by the paralogous genes, Hoxa3 and Hoxd3, can carry out identical biological functions, and that the different roles attributed to these genes are the result of quantitative modulations in gene expression.  相似文献   

19.
20.
O Chisaka  T S Musci  M R Capecchi 《Nature》1992,355(6360):516-520
Gene targeting in mouse embryo-derived stem cells has been used to generate mice with a disruption in the homeobox gene Hox-1.6. Mice heterozygous at the Hox-1.6 locus appear normal, whereas Hox-1.6-/Hox-1.6- mice die at or shortly after birth. These homozygotes exhibit profound defects in the formation of the external, middle and inner ears as well as in specific hindbrain nuclei, and in cranial nerves and ganglia. The affected tissues lie within a narrow region along the anteroposterior axis of the mouse but are of diverse embryonic origin. The set of defects associated with the disruption of Hox-1.6 is distinct from and nonoverlapping with that of the closely linked Hox-1.5 gene. But both mutations cause loss, rather than homeotic transformation, of tissues and structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号