首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mattapallil JJ  Douek DC  Hill B  Nishimura Y  Martin M  Roederer M 《Nature》2005,434(7037):1093-1097
It has recently been established that both acute human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections are accompanied by a dramatic and selective loss of memory CD4+ T cells predominantly from the mucosal surfaces. The mechanism underlying this depletion of memory CD4+ T cells (that is, T-helper cells specific to previously encountered pathogens) has not been defined. Using highly sensitive, quantitative polymerase chain reaction together with precise sorting of different subsets of CD4+ T cells in various tissues, we show that this loss is explained by a massive infection of memory CD4+ T cells by the virus. Specifically, 30-60% of CD4+ memory T cells throughout the body are infected by SIV at the peak of infection, and most of these infected cells disappear within four days. Furthermore, our data demonstrate that the depletion of memory CD4+ T cells occurs to a similar extent in all tissues. As a consequence, over one-half of all memory CD4+ T cells in SIV-infected macaques are destroyed directly by viral infection during the acute phase-an insult that certainly heralds subsequent immunodeficiency. Our findings point to the importance of reducing the cell-associated viral load during acute infection through therapeutic or vaccination strategies.  相似文献   

2.
Functional impairment of T cells is characteristic of many chronic mouse and human viral infections. The inhibitory receptor programmed death 1 (PD-1; also known as PDCD1), a negative regulator of activated T cells, is markedly upregulated on the surface of exhausted virus-specific CD8 T cells in mice. Blockade of this pathway using antibodies against the PD ligand 1 (PD-L1, also known as CD274) restores CD8 T-cell function and reduces viral load. To investigate the role of PD-1 in a chronic human viral infection, we examined PD-1 expression on human immunodeficiency virus (HIV)-specific CD8 T cells in 71 clade-C-infected people who were naive to anti-HIV treatments, using ten major histocompatibility complex (MHC) class I tetramers specific for frequently targeted epitopes. Here we report that PD-1 is significantly upregulated on these cells, and expression correlates with impaired HIV-specific CD8 T-cell function as well as predictors of disease progression: positively with plasma viral load and inversely with CD4 T-cell count. PD-1 expression on CD4 T cells likewise showed a positive correlation with viral load and an inverse correlation with CD4 T-cell count, and blockade of the pathway augmented HIV-specific CD4 and CD8 T-cell function. These data indicate that the immunoregulatory PD-1/PD-L1 pathway is operative during a persistent viral infection in humans, and define a reversible defect in HIV-specific T-cell function. Moreover, this pathway of reversible T-cell impairment provides a potential target for enhancing the function of exhausted T cells in chronic HIV infection.  相似文献   

3.
Wakim LM  Bevan MJ 《Nature》2011,471(7340):629-632
After an infection, cytotoxic T lymphocyte precursors proliferate and become effector cells by recognizing foreign peptides in the groove of major histocompatibility complex (MHC) class I molecules expressed by antigen-presenting cells (APCs). Professional APCs specialized for T-cell activation acquire viral antigen either by becoming infected themselves (direct presentation) or by phagocytosis of infected cells, followed by transfer of antigen to the cytosol, processing and MHC class I loading in a process referred to as cross-presentation. An alternative way, referred to as 'cross-dressing', by which an uninfected APC could present antigen was postulated to be by the transfer of preformed peptide-MHC complexes from the surface of an infected cell to the APC without the need of further processing. Here we show that this mechanism exists and boosts the antiviral response of mouse memory CD8(+) T cells. A number of publications have demonstrated sharing of peptide-loaded MHC molecules in vitro. Our in vitro experiments demonstrate that cross-dressing APCs do not acquire peptide-MHC complexes in the form of exosomes released by donor cells. Rather, the APCs and donor cells have to contact each other for the transfer to occur. After a viral infection, we could isolate cross-dressed APCs able to present viral antigen in vitro. Furthermore, using the diphtheria toxin system to selectively eliminate APCs that could only acquire viral peptide-MHC complexes by cross-dressing, we show that such presentation can promote the expansion of resting memory T cells. Notably, naive T cells were excluded from taking part in the response. Cross-dressing is a mechanism of antigen presentation used by dendritic cells that may have a significant role in activating previously primed CD8(+) T cells.  相似文献   

4.
The acquired immunodeficiency syndrome (AIDS)-causing lentiviruses human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) effectively evade host immunity and, once established, infections with these viruses are only rarely controlled by immunological mechanisms. However, the initial establishment of infection in the first few days after mucosal exposure, before viral dissemination and massive replication, may be more vulnerable to immune control. Here we report that SIV vaccines that include rhesus cytomegalovirus (RhCMV) vectors establish indefinitely persistent, high-frequency, SIV-specific effector memory T-cell (T(EM)) responses at potential sites of SIV replication in rhesus macaques and stringently control highly pathogenic SIV(MAC239) infection early after mucosal challenge. Thirteen of twenty-four rhesus macaques receiving either RhCMV vectors alone or RhCMV vectors followed by adenovirus 5 (Ad5) vectors (versus 0 of 9 DNA/Ad5-vaccinated rhesus macaques) manifested early complete control of SIV (undetectable plasma virus), and in twelve of these thirteen animals we observed long-term (≥1 year) protection. This was characterized by: occasional blips of plasma viraemia that ultimately waned; predominantly undetectable cell-associated viral load in blood and lymph node mononuclear cells; no depletion of effector-site CD4(+) memory T cells; no induction or boosting of SIV Env-specific antibodies; and induction and then loss of T-cell responses to an SIV protein (Vif) not included in the RhCMV vectors. Protection correlated with the magnitude of the peak SIV-specific CD8(+) T-cell responses in the vaccine phase, and occurred without anamnestic T-cell responses. Remarkably, long-term RhCMV vector-associated SIV control was insensitive to either CD8(+) or CD4(+) lymphocyte depletion and, at necropsy, cell-associated SIV was only occasionally measurable at the limit of detection with ultrasensitive assays, observations that indicate the possibility of eventual viral clearance. Thus, persistent vectors such as CMV and their associated T(EM) responses might significantly contribute to an efficacious HIV/AIDS vaccine.  相似文献   

5.
The extreme polymorphism in the human leukocyte antigen (HLA) class I region of the human genome is suggested to provide an advantage in pathogen defence mediated by CD8+ T cells. HLA class I molecules present pathogen-derived peptides on the surface of infected cells for recognition by CD8+ T cells. However, the relative contributions of HLA-A and -B alleles have not been evaluated. We performed a comprehensive analysis of the class I restricted CD8+ T-cell responses against human immunodeficiency virus (HIV-1), immune control of which is dependent upon virus-specific CD8+ T-cell activity. In 375 HIV-1-infected study subjects from southern Africa, a significantly greater number of CD8+ T-cell responses are HLA-B-restricted, compared to HLA-A (2.5-fold; P = 0.0033). Here we show that variation in viral set-point, in absolute CD4 count and, by inference, in rate of disease progression in the cohort, is strongly associated with particular HLA-B but not HLA-A allele expression (P < 0.0001 and P = 0.91, respectively). Moreover, substantially greater selection pressure is imposed on HIV-1 by HLA-B alleles than by HLA-A (4.4-fold, P = 0.0003). These data indicate that the principal focus of HIV-specific activity is at the HLA-B locus. Furthermore, HLA-B gene frequencies in the population are those likely to be most influenced by HIV disease, consistent with the observation that B alleles evolve more rapidly than A alleles. The dominant involvement of HLA-B in influencing HIV disease outcome is of specific relevance to the direction of HIV research and to vaccine design.  相似文献   

6.
HIV-specific cytotoxic T lymphocytes in seropositive individuals   总被引:18,自引:0,他引:18  
Virus-specific cytotoxic T lymphocytes (CTL) which kill virus-infected cells are thought to be a major host defence against viral infections. Here we report the existence of human immunodeficiency virus (HIV)-specific CTL in persons infected with this virus, the aetiological agent of AIDS (acquired immunodeficiency syndrome). Recombinant HIV-vaccinia viruses were used to express HIV antigens in B-cell lines established from subjects seropositive for HIV and seronegative controls. Circulating lymphocytes capable of killing HIV env-expressing autologous B cells were detected in eight of eight seropositive subjects; in addition, at least three seropositive subjects demonstrated gag-specific cytotoxic responses. No HIV-specific cytotoxicity was observed in seronegative subjects. Selective inhibition of the env-specific cytotoxicity by a CD3-specific monoclonal antibody indicates that the effectors are T cells. This demonstration of a cytotoxic T-cell immune response to HIV in infected individuals should prove useful in investigating the immunopathogenesis of HIV infection further and in evaluating AIDS vaccine strategies.  相似文献   

7.
Jiang X  Clark RA  Liu L  Wagers AJ  Fuhlbrigge RC  Kupper TS 《Nature》2012,483(7388):227-231
Protective T-cell memory has long been thought to reside in blood and lymph nodes, but recently the concept of immune memory in peripheral tissues mediated by resident memory T (T(RM)) cells has been proposed. Here we show in mice that localized vaccinia virus (VACV) skin infection generates long-lived non-recirculating CD8(+) skin T(RM) cells that reside within the entire skin. These skin T(RM) cells are potent effector cells, and are superior to circulating central memory T (T(CM)) cells at providing rapid long-term protection against cutaneous re-infection. We find that CD8(+) T cells are rapidly recruited to skin after acute VACV infection. CD8(+) T-cell recruitment to skin is independent of CD4(+) T cells and interferon-γ, but requires the expression of E- and P-selectin ligands by CD8(+) T cells. Using parabiotic mice, we further show that circulating CD8(+) T(CM) and CD8(+) skin T(RM) cells are both generated after skin infection; however, CD8(+) T(CM) cells recirculate between blood and lymph nodes whereas T(RM) cells remain in the skin. Cutaneous CD8(+) T(RM) cells produce effector cytokines and persist for at least 6 months after infection. Mice with CD8(+) skin T(RM) cells rapidly cleared a subsequent re-infection with VACV whereas mice with circulating T(CM) but no skin T(RM) cells showed greatly impaired viral clearance, indicating that T(RM) cells provide superior protection. Finally, we show that T(RM) cells generated as a result of localized VACV skin infection reside not only in the site of infection, but also populate the entire skin surface and remain present for many months. Repeated re-infections lead to progressive accumulation of highly protective T(RM) cells in non-involved skin. These findings have important implications for our understanding of protective immune memory at epithelial interfaces with the environment, and suggest novel strategies for vaccines that protect against tissue tropic organisms.  相似文献   

8.
Skewed maturation of memory HIV-specific CD8 T lymphocytes   总被引:89,自引:0,他引:89  
Understanding the lineage differentiation of memory T cells is a central question in immunology. We investigated this issue by analysing the expression of the chemokine receptor CCR7, which defines distinct subsets of naive and memory T lymphocytes with different homing and effector capacities and antiviral immune responses to HIV and cytomegalovirus. Ex vivo analysis of the expression of CD45RA and CCR7 antigens, together with in vitro analysis of the cell-division capacity of different memory CD8+ T-cell populations, identified four subsets of HIV- and CMV-specific CD8+ T lymphocytes, and indicated the following lineage differentiation pattern: CD45RA+ CCR7+ --> CD45RA- CCR7+ --> CD45RA- CCR7- --> CD45RA+ CCR7-. Here we demonstrate through analysis of cell division (predominantly restricted to the CCR7+ CD8+ T-cell subsets) that the differentiation of antigen-specific CD8+ T cells is a two-step process characterized initially by a phase of proliferation largely restricted to the CCR7+ CD8+ cell subsets, followed by a phase of functional maturation encompassing the CCR7- CD8+ cell subsets. The distribution of these populations in HIV- and CMV-specific CD8+ T cells showed that the HIV-specific cell pool was predominantly (70%) composed of pre-terminally differentiated CD45RA- CCR7- cells, whereas the CMV-specific cell pool consisted mainly (50%) of the terminally differentiated CD45RA+ CCR7- cells. These results demonstrate a skewed maturation of HIV-specific memory CD8+ T cells during HIV infection.  相似文献   

9.
AIDS virus-specific cytotoxic T lymphocytes in lung disorders   总被引:6,自引:0,他引:6  
Human immunodeficiency virus (HIV) is implicated in the development of AIDS (acquired immune deficiency syndrome). HIV infection leads to the generation of HIV-specific thymus-derived (T) lymphocytes in humans and apes. We describe an experimental system permitting the quantitative and systematic analysis of HIV-specific cytotoxic T lymphocytes (CTL). Functional, HIV-specific CTL are obtained by broncho-alveolar lavage (BAL) from the lungs of seropositive patients with lymphocytic alveolitis. These alveolar CTL: (1) recognize and kill HIV-infected alveolar macrophages in vitro under autologous, but not heterologous, conditions; (2) correspond to standard CTL as they express the CD3 and CD8 surface markers, but not the CD4 marker; and (3) are restricted by class I HLA transplantation antigens in their cytotoxic activities. We propose the hypothesis that interactions between HIV-specific CTL and infected macrophages induce major inflammatory reactions in seropositive patients.  相似文献   

10.
Infections localized to peripheral tissues such as the skin result in the priming of T-cell responses that act to control pathogens. Activated T cells undergo migrational imprinting within the draining lymph nodes, resulting in memory T cells that provide local and systemic protection. Combinations of migrating and resident memory T cells have been implicated in long-term peripheral immunity, especially at the surfaces that form pathogen entry points into the body. However, T-cell immunity consists of separate CD4(+) helper T cells and CD8(+) killer T cells, with distinct effector and memory programming requirements. Whether these subsets also differ in their ability to form a migrating pool involved in peripheral immunosurveillance or a separate resident population responsible for local infection control has not been explored. Here, using mice, we show key differences in the migration and tissue localization of memory CD4(+) and CD8(+) T cells following infection of the skin by herpes simplex virus. On resolution of infection, the skin contained two distinct virus-specific memory subsets; a slow-moving population of sequestered CD8(+) T cells that were resident in the epidermis and confined largely to the original site of infection, and a dynamic population of CD4(+) T cells that trafficked rapidly through the dermis as part of a wider recirculation pattern. Unique homing-molecule expression by recirculating CD4(+) T effector-memory cells mirrored their preferential skin-migratory capacity. Overall, these results identify a complexity in memory T-cell migration, illuminating previously unappreciated differences between the CD4(+) and CD8(+) subsets.  相似文献   

11.
Despite antiretroviral therapy, proviral latency of human immunodeficiency virus type 1 (HIV-1) remains a principal obstacle to curing the infection. Inducing the expression of latent genomes within resting CD4(+) T cells is the primary strategy to clear this reservoir. Although histone deacetylase inhibitors such as suberoylanilide hydroxamic acid (also known as vorinostat, VOR) can disrupt HIV-1 latency in vitro, the utility of this approach has never been directly proven in a translational clinical study of HIV-infected patients. Here we isolated the circulating resting CD4(+) T cells of patients in whom viraemia was fully suppressed by antiretroviral therapy, and directly studied the effect of VOR on this latent reservoir. In each of eight patients, a single dose of VOR increased both biomarkers of cellular acetylation, and simultaneously induced an increase in HIV RNA expression in resting CD4(+) cells (mean increase, 4.8-fold). This demonstrates that a molecular mechanism known to enforce HIV latency can be therapeutically targeted in humans, provides proof-of-concept for histone deacetylase inhibitors as a therapeutic class, and defines a precise approach to test novel strategies to attack and eradicate latent HIV infection directly.  相似文献   

12.
Restoring function in exhausted CD8 T cells during chronic viral infection   总被引:1,自引:0,他引:1  
Functional impairment of antigen-specific T cells is a defining characteristic of many chronic infections, but the underlying mechanisms of T-cell dysfunction are not well understood. To address this question, we analysed genes expressed in functionally impaired virus-specific CD8 T cells present in mice chronically infected with lymphocytic choriomeningitis virus (LCMV), and compared these with the gene profile of functional memory CD8 T cells. Here we report that PD-1 (programmed death 1; also known as Pdcd1) was selectively upregulated by the exhausted T cells, and that in vivo administration of antibodies that blocked the interaction of this inhibitory receptor with its ligand, PD-L1 (also known as B7-H1), enhanced T-cell responses. Notably, we found that even in persistently infected mice that were lacking CD4 T-cell help, blockade of the PD-1/PD-L1 inhibitory pathway had a beneficial effect on the 'helpless' CD8 T cells, restoring their ability to undergo proliferation, secrete cytokines, kill infected cells and decrease viral load. Blockade of the CTLA-4 (cytotoxic T-lymphocyte-associated protein 4) inhibitory pathway had no effect on either T-cell function or viral control. These studies identify a specific mechanism of T-cell exhaustion and define a potentially effective immunological strategy for the treatment of chronic viral infections.  相似文献   

13.
Waggoner SN  Cornberg M  Selin LK  Welsh RM 《Nature》2012,481(7381):394-398
Antiviral T cells are thought to regulate whether hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections result in viral control, asymptomatic persistence or severe disease, although the reasons for these different outcomes remain unclear. Recent genetic evidence, however, has indicated a correlation between certain natural killer (NK)-cell receptors and progression of both HIV and HCV infection, implying that NK cells have a role in these T-cell-associated diseases. Although direct NK-cell-mediated lysis of virus-infected cells may contribute to antiviral defence during some virus infections--especially murine cytomegalovirus (MCMV) infections in mice and perhaps HIV in humans--NK cells have also been suspected of having immunoregulatory functions. For instance, NK cells may indirectly regulate T-cell responses by lysing MCMV-infected antigen-presenting cells. In contrast to MCMV, lymphocytic choriomeningitis virus (LCMV) infection in mice seems to be resistant to any direct antiviral effects of NK cells. Here we examine the roles of NK cells in regulating T-cell-dependent viral persistence and immunopathology in mice infected with LCMV, an established model for HIV and HCV infections in humans. We describe a three-way interaction, whereby activated NK cells cytolytically eliminate activated CD4 T cells that affect CD8 T-cell function and exhaustion. At high virus doses, NK cells prevented fatal pathology while enabling T-cell exhaustion and viral persistence, but at medium doses NK cells paradoxically facilitated lethal T-cell-mediated pathology. Thus, NK cells can act as rheostats, regulating CD4 T-cell-mediated support for the antiviral CD8 T cells that control viral pathogenesis and persistence.  相似文献   

14.
Li Q  Duan L  Estes JD  Ma ZM  Rourke T  Wang Y  Reilly C  Carlis J  Miller CJ  Haase AT 《Nature》2005,434(7037):1148-1152
In early simian immunodeficiency virus (SIV) and human immunodeficiency virus-1 (HIV-1) infections, gut-associated lymphatic tissue (GALT), the largest component of the lymphoid organ system, is a principal site of both virus production and depletion of primarily lamina propria memory CD4+ T cells; that is, CD4-expressing T cells that previously encountered antigens and microbes and homed to the lamina propria of GALT. Here, we show that peak virus production in gut tissues of SIV-infected rhesus macaques coincides with peak numbers of infected memory CD4+ T cells. Surprisingly, most of the initially infected memory cells were not, as expected, activated but were instead immunophenotypically 'resting' cells that, unlike truly resting cells, but like the first cells mainly infected at other mucosal sites and peripheral lymph nodes, are capable of supporting virus production. In addition to inducing immune activation and thereby providing activated CD4+ T-cell targets to sustain infection, virus production also triggered an immunopathologically limiting Fas-Fas-ligand-mediated apoptotic pathway in lamina propria CD4+ T cells, resulting in their preferential ablation. Thus, SIV exploits a large, resident population of resting memory CD4+ T cells in GALT to produce peak levels of virus that directly (through lytic infection) and indirectly (through apoptosis of infected and uninfected cells) deplete CD4+ T cells in the effector arm of GALT. The scale of this CD4+ T-cell depletion has adverse effects on the immune system of the host, underscoring the importance of developing countermeasures to SIV that are effective before infection of GALT.  相似文献   

15.
16.
A P Fields  D P Bednarik  A Hess  W S May 《Nature》1988,333(6170):278-280
AIDS is an immunoregulatory disorder characterized by depletion of the CD4+, helper/inducer lymphocyte population. The causative agent of this disease is the human immunodeficiency virus, HIV, which infects CD4+ cells and leads to cytopathic effects characterized by syncytia formation and cell death. Recent studies have demonstrated that binding of HIV to its cellular receptor CD4 is necessary for viral entry. We find that binding of HIV to CD4 induces rapid and sustained phosphorylation of CD4 which could involve protein kinase C. HIV-induced CD4 phosphorylation can be blocked by antibody against CD4 and monoclonal antibody against the HIV envelope glycoprotein gp120, indicating that a specific interaction between CD4 and gp120 is required for phosphorylation. Electron microscopy shows that a protein kinase C inhibitor does not impair binding of HIV to CD4+ cells, but causes an apparent accumulation of virus particles at the cell surface, at the same time inhibiting viral infectivity. These results indicate a possible role for HIV-induced CD4 phosphorylation in viral entry and identify a potential target for antiviral therapy.  相似文献   

17.
Binding of the human immunodeficiency virus (HIV) to infectable host cells, such as B and T lymphocytes, monocytes and colorectal cells, is mediated by a high-affinity interaction between the gp120 component of the viral envelope glycoprotein and the CD4 receptor. Upon binding, it is thought that the second component of the envelope, gp41, mediates fusion between the viral envelope and host cell membranes. However, the early steps of HIV infection have not yet been thoroughly elucidated. Viral entry was first reported to be mediated by pH-dependent receptor-mediated endocytosis; subsequent studies have shown entry to be pH-independent. Although direct fusion of virus to plasma membranes of infected cells has been observed by electron microscopy, it is still formally possible that the infectious path of the virus involves receptor-mediated endocytosis. To gain a better understanding of receptor function in viral entry, we have analysed the ability of several altered or truncated forms of CD4 to serve as effective viral receptors. Our results indicate that domains beyond the HIV-binding region of CD4 are not required for viral infection. Some of the altered forms of CD4 that serve as effective HIV receptors are severely impaired in their ability to be endocytosed. These experiments therefore support the notion that viral fusion to the plasma membrane is sufficient for infection.  相似文献   

18.
SAP is required for generating long-term humoral immunity   总被引:21,自引:0,他引:21  
Crotty S  Kersh EN  Cannons J  Schwartzberg PL  Ahmed R 《Nature》2003,421(6920):282-287
Long-lived plasma cells and memory B cells are the primary cellular components of long-term humoral immunity and as such are vitally important for the protection afforded by most vaccines. The SAP gene has been identified as the genetic locus responsible for X-linked lymphoproliferative disease, a fatal immunodeficiency. Mutations in SAP have also been identified in some cases of severe common variable immunodeficiency disease. The underlying cellular basis of this genetic disorder remains unclear. We have used a SAP knockout mouse model system to explore the role of SAP in immune responses. Here we report that mice lacking expression of SAP generate strong acute IgG antibody responses after viral infection, but show a near complete absence of virus-specific long-lived plasma cells and memory B cells, despite the presence of virus-specific memory CD4+ T cells. Adoptive transfer experiments show that SAP-deficient B cells are normal and the defect is in CD4+ T cells. Thus, SAP has a crucial role in CD4+ T-cell function: it is essential for late B-cell help and the development of long-term humoral immunity but is not required for early B-cell help and class switching.  相似文献   

19.
Soluble CD4 molecules neutralize human immunodeficiency virus type 1   总被引:59,自引:0,他引:59  
A Traunecker  W Lüke  K Karjalainen 《Nature》1988,331(6151):84-86
Human immunodeficiency virus (HIV) infection can bring about total collapse of the immune system by infecting helper T lymphocytes which express CD4, the molecule which mediates interaction between the cell surface and viral envelope glycoprotein gp120 (refs 3-10). HIV apparently escapes the effects of neutralizing antibodies in vivo by generating new variants which must still interact with CD4 to maintain a cycle of infection. One route to block HIV infection, therefore, could use solubilized CD4 protein to inhibit attachment of the virus to its target cell. We have used recombinant DNA techniques to generate soluble forms of CD4, and show here that these are potent inhibitors of HIV infection in vitro.  相似文献   

20.
Natural killer (NK) cells have an important role in the control of viral infections, recognizing virally infected cells through a variety of activating and inhibitory receptors. Epidemiological and functional studies have recently suggested that NK cells can also contribute to the control of HIV-1 infection through recognition of virally infected cells by both activating and inhibitory killer immunoglobulin-like receptors (KIRs). However, it remains unknown whether NK cells can directly mediate antiviral immune pressure in vivo in humans. Here we describe KIR-associated amino-acid polymorphisms in the HIV-1 sequence of chronically infected individuals, on a population level. We show that these KIR-associated HIV-1 sequence polymorphisms can enhance the binding of inhibitory KIRs to HIV-1-infected CD4(+) T cells, and reduce the antiviral activity of KIR-positive NK cells. These data demonstrate that KIR-positive NK cells can place immunological pressure on HIV-1, and that the virus can evade such NK-cell-mediated immune pressure by selecting for sequence polymorphisms, as was previously described for virus-specific T cells and neutralizing antibodies. NK cells might therefore have a previously underappreciated role in contributing to viral evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号